
DRAFT
Windows Platform-Based Segments

DII COE I&RTS: Rev 4.2 March 2001 1

7. Windows Platform-Based Segments

This chapter describes the technical requirements for building and integrating software
components on top of the Windows platform. With the migration of the DII COE to the
Windows 2000 family of operating systems the DII COE now supports both Windows
2000 and Windows NT. However DII COE compliance evaluations will only be
performed on Windows 2000 platforms. Segments should install and be fully functional
under both Windows 2000 and Windows NT. Any guidance specific to only one of the
platforms will specifically state this fact. When the Windows platform is referenced in the
remainder of this chapter, it is understood to mean both the Window NT version 4 and
Windows 2000 version 1 operating system families.

When the Windows Logo Program is referenced in the remainder of this chapter, it is
understood to mean the program as defined by the requirements in the two application
specifications:

Desktop - Application Specification for Microsoft Windows 2000 for desktop
applications.

Server – Application Specification for Microsoft Windows 2000, Server, Advanced
Server, and DataCenter Server.

These specifications will be referred to in the remainder of this chapter as the Windows
Logo Program Specifications. The intent is to use the Windows Logo Program as the
baseline set of requirements that Win32 and Win64 software components for COE
platforms must meet. The main goals of the COE and Windows Logo Program are the
same.

• “Tested” - The segment has been tested and is fully functional on the Windows 2000

platforms.

• “Best User Experience” - The segment has been designed to provide optimum

usability and to ensure a consistent, accessible user experience.

• “Works well with Other Applications and Devices” - Segments are designed to

take advantage of the latest software & hardware technologies available on the
Windows platforms.

It is recognized that the COE is defining a specific environment in DoD to ensure security,
interoperability and peaceful coexistence, which goes beyond those needed for general use
in the commercial market place. In recognition of these unique requirements, this chapter
and the developers’ guidance section in chapter 9 are designed to provide guidance for:

• Unique DII COE requirements that are not addressed in the Windows Logo Program
Specifications,

• DII COE requirements that are different from those directed in the Windows Logo

Program Specifications, and

Windows Platform-Based Segments

2 March 2001 DII COE I&RTS: Rev 4.2

• Legacy segments built to previous versions of the DII COE and I&RTS.

This chapter also provides guidance in areas where there are important differences
between Windows and UNIX. The COE concepts are not specific to UNIX, or Windows,
or any other operating system or windowing environment. However, certain adjustments
to COE implementation details are required to support differences between the Windows
and UNIX environments, and to meet the additional technical requirements stipulated by
the Windows environment (e.g., registry, Active Directory).

All of the requirements discussed in other chapters, except as noted in those chapters, are
also requirements for Windows segments. Chapter 6 in particular describes the
segmentation process and the format of segment descriptors that are used for both UNIX
and Windows.

The extensions described in this chapter to accommodate Windows are not platform-
dependent. The DII COE will support Windows NT on:

1. Windows NT Workstation;
2. Windows NT Server; and
3. Windows NT Server, Enterprise Edition

And Windows 2000 will be supported on:

1. Windows 2000 Professional (Workstation);
2. Windows 2000 Server; and
3. Windows 2000 Advanced Server

Of these, the DII COE has only been tested on the first 3 configurations for Intel 80x86
derivative hardware. The Datacenter Server and Appliance Kit versions of Windows 2000
are unique to each vendors hardware configuration. Therefore, the only supported
configurations are the three Windows 2000 products listed above.

The Kernel Platform Configuration program (see Appendix A) provides a
process whereby programs may submit other Windows operating
system versions or hardware configurations for validation.

Windows COE Architecture

DII COE I&RTS: Rev 4.2 March 2001 3

7.1 Windows COE Architecture

UNIX and Windows architectures are similar in many ways, but there are also many
fundamental differences. A goal of the COE is to capitalize on the similarity and to negate
or minimize the impact of the differences.

Figure 7-1Error! Reference source not found. is a simplified diagram that illustrates the
relationships between the Windows operating systems internal components and the COE
layers. The labeled boxes in the Infrastructure Services and Common Support
Applications layers are not intended to be all encompassing nor are they intended to
conflict with the COE architecture diagrams in Chapter 2. The boxes are representative of
the services and COE-component segments in the COE and is designed to illustrate the
COE platform architecture, as defined in Chapter 2, from the view of an Windows COE
based platform. The Infrastructure Services, Common Support Applications, and mission-
application segments may reside on one platform or may be distributed on separate servers
and workstations. Error! Reference source not found. Figure 7-1 is provided merely as
a common reference point for discussions of the Windows architecture and the COE in the
sections that follow.

COMMON SUPPORT APPLICATIONS

INFRASTRUCTURE SERVICES

Hardware

System Services

NT Core
Components

Communications

Presentation

JOINT/CINC
Applications

Business
Applications

Intelligence
Applications

Functional
Applications

Service C2
Applications

Mission
Applications

System/Network
 Management&

Monitoring

Combat Support
DB’s

Other
Files

Intel
DB

Tactical Specific
DB’s

Message Processing

POSIX
Subsystem

Win16

NT VDMMS-DOS

Security
Subsystem

OS/2
Subsystem

Win32 Subsystem

Misc. Environment
 Functions

Console

Executive Services

Microkernel

Hardware Abstraction Layer (HAL)

Virtual
Memory
Manager

Local
Procedure
Call
Facility

Security
Reference
Monitor

Process
Manager

Object
Manager

Hardware
Device Drivers

Network Drivers

File System
Drivers

Cache Manager

I/O Manger

Graphics
Device
Drivers

Window
Manager

Graphics
Device Interface

(WIN32K SYS)

Kernel Mode
User Mode

Operating System

S
t
a
n
d
a
r
d

A
p
p
l
i
c
a
t
i
o
n

P
r
o
g
r
a
m

I
n
t
e
r
f
a
c
e
s

S
H
A
D
E

COE
Office

AutomationData Access

Data & Object
Management

Database
Tool Kit

Developers Kit

Correlation

Distributed Computing

MCG&I

Administration Security Services

Strategic Specific
C2 DB’s

Account & Profile Mgr

Segment Installer

Figure 7-1: COE Architecture on the Windows Operating Systems

Segment Descriptor

4 March 2001 DII COE I&RTS: Rev 4.2

7.2 Windows COE Segmentation

Chapter 6 describes the segmentation process in detail. The segmentation process is
primarily aimed at providing:

• a standardized approach for software installation and uninstall,
• for providing a method for software to state dependencies and conflicts,
• and to allow software to describe system resources it needs so that the

operating system and COE can arbitrate potential conflicts.

However, many COTS products are already packaged with their own method for doing
software installation and it is not always cost-effective to “fully segment” such products.
In consideration of this fact, Chapter 6 also describes an “abbreviated segmentation”
process that allows products, particularly COTS products, to be installed through vendor-
provided instructions and yet preserve the benefits of the COE segmentation concept.
Abbreviated segmentation is even more important in the Windows environment due to the
much larger software base of already-developed applications that will be useful in a COE-
based system.

• Full Segmentation: Full segmentation is the incorporation of segment descriptor files

(SDFs) with executables, icons, menus, and data into a complete software package
that is installed using the COE-provided segment installer, COEInstaller.
Segments shall be location insensitive so that they may be installed in any directory
chosen by the operator.

• Abbreviated Segmentation: Abbreviated segmentation is the incorporation of the

DII COE required SDFs into an installation package that works through the
COEInstaller with another, Windows Logo Program compliant, installation service to
install the software or data.

Subsections 7.2.1 and 7.2.2 below discuss segmentation issues that are important for the
Windows environment for both “full” and “abbreviated” segmentation.

The degree to which “plug and play” between segments is possible is highly dependent
upon the degree to which segments are Windows Logo Program-compliant. For this
reason, the I&RTS fully supports the Microsoft Logo Specification approach as a subset of
the requirements for full DII compliance regardless of whether full or abbreviated
segmentation is chosen. DII compliance for Windows segments measures the degree to
which a segment or system achieves conformance with the rules, standards, and
specifications identified by the COE and the Windows Logo Program. Segments shall use
the Windows Logo Program Specifications for development guidance and shall meet
Windows Logo Program specifications with the exception of the items described in
section 9.6.1. Segments are not required to have a Microsoft Logo license.

Segment Descriptor

DII COE I&RTS: Rev 4.2 March 2001 5

7.2.1 Full and Abbreviated Segmentation Requirements

The requirements listed below apply equally to full and abbreviated segments, except as
noted.

• Developers may choose either full or abbreviated segmentation for Windows COTS

products, but shall obtain prior Chief Engineer approval for selecting the abbreviated
segmentation process.

• Developers shall use full segmentation for GOTS segments.

• Both full and abbreviated segmentation requires that SDFs be created in accordance

with Chapter 6 and the appropriate sections below. As per Chapter 6, segment
descriptor information is contained in files located under SegDir\SegDescrip
whether full or abbreviated segmentation is used. (SegDir is the segment’s assigned1
directory, not the segment prefix although they maybe the spelled the same.) As per
the requirements that follow, the location of SegDir will be determined at installation
time.

• DII compliance requires that developers create segments that are location insensitive.

• Segments shall operate under Windows 2000 in accordance with the Windows Logo

Program specifications, except as specified in section 9.6.1.

• At a minimum all segments shall properly register the segment and components in

accordance with the Windows Logo Program Specifications. Segments using the full
segmentation process may use the PostInstall segment descriptor to properly
register the segment components with the operating systems registry.

• Segments shall completely uninstall from a system by means of an automated,

registered uninstaller2. Segments shall not remove core components or shared
components necessary to other applications.

• Segments that contain hardware device drivers shall at a minimum support Windows

2000; device drivers for Windows NT/95/98 are optional. Device drivers shall be
compliant with the Windows Logo Program for Hardware. Hardware and device

1 Segments sometimes use the segment prefix as the name of the assigned directory, which is permissible
as long as the segment prefix is unique among all segments. This is not always the case, as explained in
Chapter 6, because developers sometimes need to share segment prefixes among segments, such as in an
aggregate segment. Therefore, to guarantee uniqueness, the assigned directory is used rather than the
segment prefix.
2 Segments that use the COEInstaller are deemed to meet this requirement since it is the tool’s
responsibility to be Logo-compliant. Segments that use abbreviated segmentation must ensure that the
vendor-provided installation process meets this requirement.

Segment Descriptor

6 March 2001 DII COE I&RTS: Rev 4.2

drivers shall follow the applicable design guide3: PC 99 Hardware Test Specification
2.0 Release.

7.2.2 Abbreviated Segmentation Considerations

This section discusses additional considerations appropriate for abbreviated segmentation,
which is especially relevant to products that are installed using a Microsoft Software
Installation (MSI) Windows installation package rather than the COE Segment Installer
tool. The abbreviated segment shall be installable out-of-the-box and even though a
commercial installation program is used for the installation, it is necessary to provide some
segment descriptor information for use by the COE Installer. In particular, the COE needs
such information so that it can recognize the existence of an abbreviated segment, so that
other segments can state dependencies on the abbreviated segment, and to be aware of
certain characteristics of the segment, such as disk space used.

• The cognizant Chief Engineer must approve the installation methodology and

sequencing of the COTS installation package and the segment descriptor files.

• To minimize installation and operational problems with filename and environment

variable conflicts, all segments shall comply with the Windows Logo Program default
installation location. The default installation location is found by querying the
following registry key:

HKLM\Microsoft\Windows\CurrentVersion\ProgramFilesDir.

The value of this key is established when the kernel is installed, and for DII-compliant
platforms, the registry key value will be drive:\Program Files. The
installation program shall query this key to ensure that segments load correctly if, for
example, a user has renamed this directory on their machine.

• The installation program, except for COTS, shall check up-front whether the current

user is a member of the administrator’s local group; when not a member the Installer
shall fail gracefully.

• In accordance with the Windows Logo Program, the Installer shall fail gracefully in the

case where a file cannot be installed or replaced because file system security prevents
an existing file from being written or overwritten. This will avoid confusion later by
preventing the user from getting file copy errors from which there is no recovery.

• An abbreviated segment requires a DEINSTALL segment descriptor file unless it is a

“permanent” segment as described in Chapter 6. This descriptor file, however, for
abbreviated segmentation will typically not have any executable statements in it. It
serves only to let the COE installer know that it is permissible for a user to delete the
segment. The actual segment removal is performed by the vendor-provided uninstall

3 Documents are available at http://www.microsoft.com/hwtest/systems/

Segment Descriptor

DII COE I&RTS: Rev 4.2 March 2001 7

program accessed through the Add/Remove Programs applet in the Control Panel. If
the actual product is removed, the COE Segment Installer tool shall be used to
remove4 the accompanying segment descriptors.

• State in the ReleaseNotes segment descriptor that the abbreviated segmentation

process has been used to create this segment.

• The disk space requirements listed in the Hardware descriptor shall be the sum of

the space required for the segment descriptors and for the software loaded through
vendor-provided procedures. (change to follow installation process of which goes
first************)

7.2.2.1 Windows Installer

With the adoption by the COE of the Application Specification for Microsoft Windows
2000 for desktop applications the COE requires desktop segment installation packages to
use the MSI technology. The MSI technology is divided into two parts that work in
combination: A client-side installer service (Msiexec.exe), normally referred to as the
Windows Installer, and a MSI package file. The Windows Installer uses information
contained in the MSI package file to install the program.

The Msiexec.exe program is a component of Windows Installer. When it is called by
Setup, Msiexec.exe uses Msi.dll to read the package (.msi) files, apply any transform
(.mst) files, and incorporate command-line options supplied by Setup. The installer
performs all installation-related tasks, including copying files onto the hard disk, making
registry modifications, creating shortcuts on the desktop, and displaying dialog boxes to
prompt for user installation preferences when necessary. Each MSI package file contains
a relational-type database that stores instructions and data required to install/uninstall the
program across many installation scenarios.

The Windows Installer is not just an installation service; it is an extensible software
management system. Windows Installer manages the installation of software, manages the
additions and deletions of software components, monitors file resiliency, and maintains
basic disaster recovery by using rollbacks.

The Windows Installer features include:

• Restores original computer state upon installation failure: Windows Installer keeps

track of all changes made to the system during the program installation process. If the
installation does not succeed, the installer can restore the system to its initial state.
This is known as "rollback."

4 This is a near-term implementation restriction. Transition to a commercial installation process will
integrate SDFs so that they are automatically removed during deinstallation without the need to take an
explicit separate step.

Deleted: *

Deleted: ********

Segment Descriptor

8 March 2001 DII COE I&RTS: Rev 4.2

• Ability to set file and directory security permissions.

• Helps prevent certain forms of inter-program conflicts: It is not unusual for a program

that is being installed or uninstalled to cause problems with another program already
on the computer, or even to cause the computer to stop responding (hang). The
installer enforces installation rules that help prevent conflicts caused when an
installation operation makes updates to a dynamic-link library (DLL) file shared by an
existing program, or when an un-installation operation deletes a DLL file shared by
another program.

• Diagnoses and repairs corrupted programs: A program can ask the installer to

determine whether an installed program has any missing or corrupted files. It can then
ask the service to repair that program as necessary by copying again only those files
found to be missing or corrupted.

• Reliably uninstalls existing programs: The installer can reliably uninstall any program it

previously installed, removing all the associated registry entries and program files,
except for those shared by other installed software.

• Supports the on-demand installation of program features: The installer can be

instructed to initially install a minimal subset of a program. Later, additional
components can be automatically installed the first time you use a features that require
additional components.

• Supports unattended program installation: The installer supports the ability to script a

program installation according to administrator instructions.

7.2.2.2 Windows Installer Requirements

Many Windows-based software segments are built using the abbreviated segmentation
process. This is done to take advantage of the ability to use the same version of the
segment for COE and non-COE systems. The Windows Installer supports the ability to
meet the COE’s and Logo Programs install and uninstall requirements. This section
provides the additional requirements for GOTS abbreviated segment Windows installer
(MSI) packages not addressed in the Logo Program specifications. COTS Windows
Installer packages that do not meet these requirements should be extended to include these
requirements by the SSA or integrating agency.

• The installation package shall include a copy of the Windows NT version of the

Windows Installer service installation program. The included Setup.exe file shall
check to see if the operating system is Windows NT and if it is and the Windows
Installer service is not installed, shall then install the Windows Installer service or
direct the individual to install the Windows Installer before procedding.

Segment Descriptor

DII COE I&RTS: Rev 4.2 March 2001 9

• The installation package at start up of local installs must check to see if the individual
performing the installation is a member of the Administrators group. If the individual
is not a member of the Administrators group, the installation package shall present a
message that administrative privileges are required to complete the installation and
then gracefully fail.

• Ensure the costing action is initiated. Costing is the method used by the Windows

Installer to determine the disk space required by all the components in an installation.
Costing takes into account factors such as whether existing files need to be
overwritten.

• The MSI file shall include a screen or screens, at or near the beginning of the

installation sequence, that perform at a minimum the following:

a. Ability to display the segments ReleaseNotes e.g., Figure 7-2: COE Segment
Welcome Screen.
b. Ability to display the segments software and/or hardware conflicts e.g., Figure 7-2:
COE Segment Welcome Screen.
c. Ability to display the segments software and/or hardware dependencies e.g., Figure
7-2: COE Segment Welcome Screen.
d. Ability to display a Help screen, which details the installation procedures.
e. A Next button event sequence that validates any dependency and/or conflict
before displaying the next screen. If a dependency or conflict exists that will not allow
the segment to function, the installation package does not advance to the next screen
and a warning message is presented explaining what action must be taken before the
segment can be installed. See Figure 7-5: Dependency Warning Screen, for an
example of a warning screen. If the segment will function but due to the dependency
or conflict its functionality will be limited. The installation package may elect to
display a warning message explaining the impact on the segment and allow the
individual installing the segment to continue or cancel the installation.
f. Display the segments name, prefix, and version number e.g., Figure 7-2: COE
Segment Welcome Screen

Segment Descriptor

10 March 2001 DII COE I&RTS: Rev 4.2

Figure 7-2: COE Segment Welcome Screen

Figure 7-3: ReleaseNotes Screen

Segment Descriptor

DII COE I&RTS: Rev 4.2 March 2001 11

Figure 7-4: Dependency Screen

Figure 7-5: Dependency Warning Screen

• Provide a batch or command file that can be used to initiate a silent/unattended
installation of the segment.

• Windows Installer installation packages that perform as a Patches or Upgrade are

required to have a corresponding set of segment descriptor files.

• The segments entry in the Add/Remove Programs applet shall contain a

support information line that when selected displays information on the
segment as illustrated in Figure 7-6. The registry entries required for this screen are
detailed in section 9.6.6.

Segment Descriptor

12 March 2001 DII COE I&RTS: Rev 4.2

Figure 7-6: Add/Remove Programs applet Support Information

7.3 Segment Descriptor Considerations for Windows

Chapter 6 describes the segment descriptors required for segments whether they are
Windows or UNIX, and whether they are a result of full or abbreviated segmentation. This
section is provided as a quick reference for items that are Windows-related. Refer to
Chapter 6 for complete discussion of each of the descriptors discussed below.

General comments follow:

• Pathnames shall be given using ‘\’ in conformance to the Windows environment.

• Filenames and directory names are to be considered as if they are case sensitive, even

though Windows itself is not case sensitive. This will minimize porting efforts between
Windows and UNIX platforms.

• Segments should normally not need to specify a disk drive because such designations

are considered to be advisory only. For backward compatibility, when a disk drive
designation is given, it and any associated pathname must be enclosed in double
quotes. This is required so that the tools can distinguish between use of ‘:’ as a field
delimiter for descriptor lines, or as a separator between a disk drive name and a
directory pathname.

• In accordance with commercial standards, executable descriptors shall have either a

.EXE extension (for compiled programs) or a .BAT/.CMD extension (for batch
files). This applies to the “scripts” used in the installation process: DEINSTALL,

Segment Descriptor

DII COE I&RTS: Rev 4.2 March 2001 13

PostInstall, PreInstall, and PreMakeInst. Segment descriptor files may
optionally have a .TXT extension.

Comments related to specific descriptors follow.

COEServices

DEINSTALL.EXE and DEINSTALL.BAT

A segment that does not include a DEINSTALL descriptor is deemed a “permanent”
segment and may be updated, but not removed. In many situations, it is desirable for the
segment to be removable, but there are no actions that DEINSTALL must perform. For
this reason, DEINSTALL may exist as a zero-length file and it may exist as a file with no
extension.

Direct

Segments should normally not register information in the Windows NT Control Panel
Add/Remove Programs application because the segment installer will perform this
function in accordance with the Windows Logo Program requirements. However,
abbreviated segmentation segments that use a Logo-compliant installation process may
already do this.

FileAttribs

The FileAttribs descriptor is not presently supported for Windows platforms.

Hardware

The diskname field for the $PARTITION keyword must be a disk drive name. For
example, to indicate that a segment requires 20MB on the F disk drive, the proper
$PARTITION statement is:

$PARTITION:”F:”:20480

Network

The Network descriptor is not presently supported for Windows NT and Windows 2000
platforms. VerifySeg will issue a warning if a Network descriptor is found for an
Windows-based segment.

Segment Descriptor

14 March 2001 DII COE I&RTS: Rev 4.2

Processes

The $RUN_ONCE keyword identifies process that should be run the next time the system
is started. This keyword requires approval by the cognizant DOD Chief Engineer because
of potential security and performance risks.

The username field for $BOOT is ignored for Windows. On Windows platforms, $BOOT,
$RUN_ONCE, and $PERIODIC processes run as a service and are thus run as a system
user. They cannot be run as an arbitrary user.

Registry

The Registry descriptor allows the segment to have the COEInstaller create
registry key entries.

Reserved Words

DII COE I&RTS: Rev 4.2 March 2001 15

7.4 Platform Configurations

All PC hardware shall be Windows 2000-compliant, and services and agencies are
required to select hardware platforms that are contained on the Microsoft Hardware
Compatibility List. Programs that do not follow this requirement should not expect to
receive assistance from the DII COE Engineering Office concerning hardware
compatibility problems.

Windows platforms may be interconnected into Windows NT domains and workgroups or
into Windows 2000 Active Directory domains, trees, or forest. Windows platforms,
depending upon how they are to be used in the architecture and what operating system
software version is loaded on them, may be further classified as either a server or
workstation5 configuration.

Core components can be installed on top of the operating system, expanding the systems
capabilities and functionality. Core components are defined as components purchased with
the commercial Windows operating system and are installable under the same license.
Utilities and files included in Windows Service packs by definition become core
components upon installation. Examples of core components include:

• Chat
• Clock
• Domain Controller (server only)
• DNS Server (server only)
• Internet Explorer
• Public-key (PK) cryptographic services
• Internet Information Server (IIS) (server only)
• Terminal Server (server only)
• Active Directory (server only)
• Certificate Services (server only)

Core components provided by the vendor do not have to be packaged in segment format.
They may be installed using vendor-provided instructions as part of loading the DII COE
kernel, or if the vendor instructions permit it, after the operating system and kernel have
been loaded. Being a Windows operating system core component does not mean the DII
COE endorses their use.

Security Considerations

See Chapter 4 for Windows platform security considerations.

5 As noted in section 7, the COE has only been tested on Intel 80x86-derivative hardware for Windows
2000 Professional, Server and Advances Server Edition configurations.

Deleted: 0

Reserved Words

16 March 2001 DII COE I&RTS: Rev 4.2

7.4.1 General Directory Structure Requirements

The basic directory structure described in Chapter 6 is supported on Windows platforms
for legacy segments. Chapter 6 shows the root directory for segments as \h. However,
the practice on Windows platforms is to use the standard directory \Program Files
as the root directory for applications. Therefore, the COE tools are migrating to this
practice. In the interim, Windows COE platforms may have both the legacy \h and the
\Program Files convention. The intent is to ensure that the DII COE directory
structure follows commercial practices, when practical, and is thus compliant with the
Windows Logo Program.

The present COE installation software6 will attempt to put segments on the primary disk
drive first. However, an operator should override this in order to conform to conventions
described in the Site Integrators Guide. Segments should only be installed on the operating
system drive (partition) when disk space on other logical drives is unavailable.

The following guidance is provided for Windows-based segments.

• The directory structure for Windows segments shall be self-contained and shall be

location- insensitive. This then allows the decision of where to place a segment to be
made at installation time and not a hardcoded requirement of the segment. Segments
shall use the Win32 API, in accordance with the Windows Logo Program, to return
handles to directory locations rather than relying upon a fixed, hardcoded structure.

• The segment directory structure shall be implemented in accordance with the Windows

Logo Program Specifications. This means that segments will be located by default
underneath the standard directory \Program Files\SegDir. But as per the
previous requirement, an operator will choose whether the segment is to be installed as
per industry convention (i.e., \Program Files) or as per local site conventions.

• Segments that share files shall locate shared files underneath the standard directory

\Program Files\Common Files\SegDir Shared

where SegDir is the “owning” segment’s assigned directory. The default common files
root directory is found by querying the below registry key:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\C
ommonFilesDir.

Subdirectories underneath this Shared subdirectory should be named to correspond to
the file type for the shared files. For example,

\Program Files\Common Files\SegDir Shared\DLL

6 A future release of the COEInstaller will be provided to conform to the conventions for disk
partitions described in the Systems Integrators Guide.

Reserved Words

DII COE I&RTS: Rev 4.2 March 2001 17

would be appropriate for shared DLLs.

• Developers shall place segment descriptor information in the subdirectory

\h\SegDir\SegDescrip as described in Chapter 6.

• Segment data files that are dynamically updated as a user interacts with the segment,

but that are identified with a user role and not a specific user, shall be placed
underneath one of the following standard directories, depending upon the data scope:

Data drive:\data\local\SegDir\data (local scope)
Data drive:\data\global\SegDir\data (global scope)
Segment drive:\Program Files\SegDir\data (segment scope)

where SegDir is the segment’s assigned directory. Files that contain data support
functions specific to the data files may also be located in the above \data directories.
The supporting files must be specific to the data files. An example of this is a DLL
that contains routines to extract information from the data files specific to each type of
aircraft. The DLL embedded routines only work with that specific aircraft’s data files
and the mission-application segment can have multiple aircraft data segments installed,
based on mission requirements, each with its matching DLL. The intent is to support
the ability to build a data segment that contains the data and supporting files together
into one deployment package.

• The Personal subdirectory shall be used to store operator preferences (rather than

the UNIX Prefs subdirectory described in Chapter 6.

• Refer to subsections 7.4.2and 7.4.3below for detailed guidance on conventions for

global and group data requirements.

• Refer to subsection 7.4.3 below for guidance on directory structure naming

conventions for subdirectories underneath SegDir.

• Developers shall ensure that the segment separates the runtime environment from the

development environment. This requirement is so that a segment delivered to a site
will contain only those files required for operation and will not include source code,
makefiles, header files, etc. It also simplifies configuration management so that
segment files can be collected as appropriate for operational sites (executables and
data). Segments providing public APIs shall include header files and linkable libraries
as part of the runtime environment and development environment. Refer to Chapter 9
for implementation details.

• Developers shall ensure that classified files are separated from unclassified files and

delivered in separate segments as described in Chapter 6.

Reserved Words

18 March 2001 DII COE I&RTS: Rev 4.2

7.4.2 Segment Subdirectory Structure

The Windows Logo Program does not provide guidance for subdirectories below a
segment’s home directory. The intent here is to provide guidance on the subdirectory
structure for all types of segments, except COTS. This guidance builds on Chapter 6 and
the Windows Logo Program directory structure requirements.

The intent is to have segments create only those subdirectories required to store files.
Empty subdirectories should be created during the segment’s installation when files will be
created in the subdirectory by the segment. Subdirectories other than those listed below
may be created as required, but such directories shall not duplicate the purpose and
function of any required subdirectory. Subdirectory names, for new subdirectories, shall
meet the naming conventions in subsection 7.6.1.

Except COTS, segments shall use the following subdirectories under SegDir for files that
fit within the categories identified:

• \bin - executables and DLLs that are not shared
• \data - static data, should only contain subdirectories or individual data and support

files
• \data\INI - initialization (.ini) files
• \data\Help - help (.hlp) files
• \Doc - documents and manuals (help files do not go in this subdirectory)
• \Scripts – interpreted code files (e.g., .bat, .cmd, .pl)
• \Setup - setup files used to reconfigure7 the segment or Suite after installation.

Except COTS, segments shall use the following subdirectories underneath their
\Program Files\Common Files\SegDir Shared for files that fit within the
categories identified:

• \data - shared static data files
• \DLL - shared library files.

Directory and subdirectory requirements for segment submission to the SSA are discussed
in subsection 9.6.16.

Figure 7-7Error! Reference source not found. is a sample segment drive that illustrates
the following key points about segment subdirectory structures:

• The Netscape web browser, a COE-component segment, is installed out-of-the-box

into the default home directory \Program Files\Netscape.

7 Do not confuse the Setup subdirectory with the SegDescrip subdirectory. The SegDescrip
subdirectory contains information about segment installation. The Setup subdirectory contains files that
are used to reconfigure a segment after installation has already been performed, perhaps even after a
segment has been operational for a while and needs to be restored to the state was in after installation.

Reserved Words

DII COE I&RTS: Rev 4.2 March 2001 19

• The abbreviated software segment GBSSBM, a mission-application segment in the GBS
Suite, has two separate directory structures. First, the segment’s home directory
\Program Files\GBS\GBSSBM is created during the segment’s installation
routine. The segment’s commercially based installation routine is developed to install
the segment into this directory, in accordance with the Windows Logo Program.
Second, the segment’s COE required directory, \h\COTS\GBSSBM, and
subdirectories are created by the COEInstaller. Subdirectories are created based
on the segment’s segment descriptor files.

Figure 7-7: Segment Directory Structure Example

7.4.3 Data Directory Structure

Figure 7-8Error! Reference source not found. is a sample data drive that illustrates the
following key points about directory structures for dynamic segment data:

Reserved Words

20 March 2001 DII COE I&RTS: Rev 4.2

• Chapters 5 and 6 define data in terms of data scope. The intent of this section is to
show how the guidance in Chapters 5 and 6 on data, with local or global scope, is
applied to Windows-based COE platforms. The data directory structure is the same for
all Windows-based COE platforms, whether a workstation or server. Static data used
by a segment shall be stored in the \data subdirectory under the segment’s home
directory, as shown in Error! Reference source not found..

• Data that is dynamic in nature shall be stored on a logical drive designated as a data

drive. Data that is managed and updated by the segment during operations, where the
segment and data reside on the same platform (local scope), shall be stored in the
directory Data drive:\data\local\SegDir\data, where SegDir is the
segment’s assigned directory. An example of this structure is the TIMER segment
shown in Error! Reference source not found..

• Dynamic segment data with global scope shall be stored in the directory

Data drive:\data\global\SegDir\data. An example of this structure is
the GBSSBM segment shown in Error! Reference source not found.. Data stored in
the subdirectory Data drive:\data\global\GBSSBM\data is created,
updated, and deleted by GBSSBM client systems. Normally the directory is shared on
the network to allow client access to the data.

Reserved Words

DII COE I&RTS: Rev 4.2 March 2001 21

Figure 7-8: Data Directory Structure Example

• Data managed by a database management system like Oracle, Sybase, Informix, or
SQL Server is stored on a database server underneath the directory
Data drive:\SegDir\DBS_files. Database data files (tablespace, index, log)
may be located on the same drive (partition) with the \USERS directory, or it may be
on one or more dedicated physical or logical drives. Error! Reference source not
found. illustrates a combined users and data drive. The database segment directory
shown has a segment whose assigned directory name is GBSDB. The subdirectory
structure underneath this segment is dependent upon the segment’s design. The data
access standards (JDBC, ODBC, OLE-DB) used between client and database server,
or server and database server, do not change the COE directory structure
requirements. If the segment supports more than one mission application, each mission
application’s data files shall be in a separate subdirectory. For example,

Data drive:\GBSDB\DBS_files\MissionApp.

Reserved Words

22 March 2001 DII COE I&RTS: Rev 4.2

Every Windows-based database segment, when required shall have the following
subdirectories under their home directory:

• \bin - executables and DLLs that are not shared
• \data - static data, should only contain subdirectories or individual data and support

files
• \data\Help - help (.hlp) files
• \DBS_files - database files
• \Doc - documents and manuals (help files do not go in this subdirectory)
• \install - scripts to install and create the database segment.

7.5 Reserved Words

The Windows Logo Program refers to reserved words as “Keywords.” Keywords consist
of:

• segment prefixes,
• environment variables,
• reserved filenames, and
• reserved directory names (includes the complete path).

Windows operating system files are called Core files and are reserved as keywords.

7.5.1 Segment Prefixes

The segment prefixes listed as reserved in Chapter 6 are also reserved in the Windows-
based COE. A current list of segment prefixes is available from the COE Engineering
Office. The following are reserved segment prefixes specific to the Windows-based COE:

NT
WIN
WIN95
WIN98
WIN2K
WINNT
WinXP.

7.5.2 Environment Variables

Historically, the COE environment variables are based on the UNIX operating system’s
requirements. Windows was developed after UNIX and, as a result, has different names
for equivalent UNIX environment variables. The environment variables8 listed as reserved
in Chapter 6 are not reserved in the Windows-based COE.

8 The COE is migrating to implement environment variables, defined in Chapter 6 for backward
compatibility with legacy segments, as registry entries. The target NT-based COE will use registry entries
accessed through the appropriate APIs rather than environment variables. Developers are advised to begin
migrating towards this approach.

Reserved Words

DII COE I&RTS: Rev 4.2 March 2001 23

Segments shall utilize the standard Windows environment variables. Segments shall not
create environment variables with the same name as any reserved environment variable.

The Windows operating system uses three levels of environment variables:

1. System environment variables,
2. User environment variables, and
3. AUTOEXEC.BAT/.NT environment variables

System environment variables are set during installation and administrators and developers
using the appropriate Win32 API can change their values. The system environment
variables listed below are reserved keywords for Windows COE platforms:

• COMPUTERNAME
• ComSpec
• NUMBER_OF_PROCESSORS
• OS
• Os2LibPath
• PROCESSOR_ARCHITECTURE
• PROCESSOR_IDENTIFIER
• PROCESSOR_LEVEL
• PROCESSOR_REVISION
• ProgramFiles
• TEMP
• windir.

Segments may not change the above system environment variables.

User environment variables can be set by users and administrators and take precedence
over system environment variables. The system and user environment variables listed
below are reserved keywords for Windows COE platforms:

• ALLUSERSPROFILE
• APPDATA
• HOMEDRIVE
• HOMEPATH
• HOMESHARE
• LOGONSERVER
• Path
• PATHEXT
• PROMPT
• SystemDrive
• SystemRoot

Reserved Words

24 March 2001 DII COE I&RTS: Rev 4.2

• USERDOMAIN
• USERNAME
• USERPROFILE.

These environment variables may be changed or extended in accordance with standard
Windows practices.

The root-level AUTOEXEC.BAT and CONFIG.SYS files, used during boot up to create
the Windows environment, are reserved files and shall not be modified by any segment,
excepting COTS segments. AUTOEXEC.NT and CONFIG.NT files set the user
environment for the command prompt and are reserved files and shall not be modified by
any segment. Segments, excepting COTS segments, should not set or extend the Windows
path environment variable. Dynamic link libraries (DLLs) and other components must
put information in the Windows registry that will tell the operating system where the DLL
or EXE code for the object is located, and how it is to be launched.

All Windows system INI files (specifically, WIN.INI and SYSTEM.INI) are reserved
files and shall not be modified by any segment, excepting COTS segments. Segments may
create and modify their own local INI files for segment variables not suited for the registry
in accordance with the Windows Logo Program.

7.5.3 Reserved Filenames

Windows core files are reserved filenames and shall not be used as the name of a segment
file. Windows core files are files required by the Windows kernel and infrastructure to
support segments and system operations. Core files are installed during the OS installation
and are provided during OS upgrades; e.g., DirectX and Direct3D. The list of core files is
dynamic, and as such a current list of core files is maintained by Microsoft and can be
downloaded from the Microsoft home page.

In addition to the core files, the Windows OS’s reserves the following filenames:

• CON
• AUX
• COM1
• COM2
• COM3
• COM4
• LPT1
• LPT2
• LPT3
• PRN
• NUL.

These names are file handles used by the OS to access hardware resources available on
most PCs. Using these as segment filenames would cause conflicts with printing, serial

Reserved Words

DII COE I&RTS: Rev 4.2 March 2001 25

port communications, and keyboard input. An attempt to use one of the device names
listed above results in a system error message.

7.5.4 Reserved Directory Names

Segments are assigned a directory name when they are registered so as to avoid two
developers using the same assigned directory. A current list of assigned directories is
available from the COE Engineering Office.

The system root directory is reserved, and segments shall not create new files in the root
directory. Additionally, application DLLs may not be installed under the system root.
7.6 Naming Conventions

 Every device or user attached to a COE network shall have a unique identification. A
duplicate identification for a domain, device, or user can cause network-wide anomalies
and result in service interruptions of varying levels of severity. The naming conventions
given in this subsection shall apply to all DOD organizations that have established, or plan
to establish, network domains using the Windows NT or Windows 2000 operating system
(OS) families for COE-based systems.

• It is recommended that all existing Windows OS based domains, servers, and
workstations be named in accordance with these conventions. Full implementation
of the conventions on existing systems is expected to take some time to achieve
full DII compliance as platforms are replaced.

• All planned or future Windows OS domains, servers, and workstations shall

comply with these conventions before implementation.

The naming conventions provided in this section are predicated upon the following facts:

1. There may be no DNS or Windows name resolution available.

2. Joint or unified networks shall be supported. These networks may consist of devices
from all services and agencies that may originate from different locations.

3. Mobile laptops should be supported. Users should be able to connect and disconnect
from COE networks without causing a name conflict.

4. The Windows Logo Program does not address the subject of naming conventions.

Naming conventions for classified and unclassified COE platforms and devices are the
same except as noted in the subsections below. COE platforms and devices that may be
accessed by non-DOD users (e.g., proxy servers on the Internet) are exempt from all
naming conventions as provided in this section.

Error! Reference source not found.

26 March 2001 DII COE I&RTS: Rev 4.2

7.6.1 Directory Names

All segments, except COTS, are required to obtain an assigned directory name at segment
registration time. The assigned directory, as explained in Chapter 6, is not the same as the
segment prefix because segment prefixes are not guaranteed to be unique for all segments.

Segments are to be self-contained underneath the assigned directory. For products in
which abbreviated segmentation is done, the “pseudo-segment” that contains the segment
descriptor information shall also be given an assigned directory name. Segments should
limit the assigned directory name length to less than 32 characters. COTS segments should
use the default directory name(s) provided by the vendor.

7.6.2 Filenames

Windows provides support for filenames up to 255 characters long (including the path and
extension). Segments should limit filename length to less than 32 characters for files
created by a segment’s user.

• Filenames can include any character except the following:

\ / : * ? < > | “

7.6.3 Registry Keys

Windows provides support for registry keys and subkeys up to 256 characters long. In the
context of this subsection registry keys are classified as:

• Root key - registry key located at the root level of a hive
• Subkey - registry key located under a root key, can be nested under other subkeys
• Top level key - root key or first subkey inserted into the registry by a segment
• Key - registry key, can be a root or subkey

Many registry root keys, subkeys and values must follow the naming conventions dictated
by the Windows registry itself. An example is the registration of a file extension. The
extension itself is registered as a root key in the HKEY_CLASSES_ROOT hive and must
be in the format of a period followed by three alphanumeric characters. Top level keys
created by a segment shall follow one of the two formats: SegPrefix-Title or
SegPrefix where SegPrefix is the segment’s prefix assigned when the segment was
registered, where - is the minus sign used as a separator, and Title is a descriptive title up
to 249 characters in length that is assigned by the segment developer. The segment prefix
may be used without a minus sign or title as a top-level Windows registry key. Subsequent
subkeys under the top-level key are not required to start with the segment prefix.

Error! Reference source not found.

DII COE I&RTS: Rev 4.2 March 2001 27

This page is intentionally blank.

