Defense Information Infrastructure (DII)

Common Operating Environment (COE)

How To Segment Guide

Version 6.0

27 August 1998

Prepared by:

Joint Interoperability and Engineering Organization

Defense Information Systems Agency

FORWARD

This document will be reviewed and updated by the Defense Information Systems Agency (DISA) as required to remain current with technology and program requirements. This document supersedes all previous Defense Information Infrastructure (DII) Common Operating Environment (COE) How To Segment Guide documents.

Changes to this document must be approved by DISA, but comments and recommendations for change may be forwarded for review and incorporation to:

DISA/JIEO

Center for Computer Systems Engineering

DII Computer Engineering Department

Attention: Ms. Nancy Blevins

5600 Columbia Pike

Falls Church, Virginia 22041

email: blevinsn@ncr.disa.mil

11
Introduction

1.1
Purpose
1
1.1
Scope
1
1.2
Related Documentation
1
1.3
Document Structure
2
1.4
Document Notation Notes
3
1.5
How to Use this Document
3
2
Pre-Segmenting Activities
4
2.1
Perform PreSegmentation Assessment on the Candidate Software
4
2.2
Order DII COE and DII COE Developer’s Toolkit
4
2.3
Guidelines for Partitioning a Software Application into Segments
5
2.4
Guidelines for Partitioning Data into Segments
5
2.5
Determine if the Segment is a COE Component or a Mission Application
5
2.6
Determine Segment Type
6
2.7
Determine Segment Name
6
2.8
Determine Segment Prefix
6
2.9
Identify Files, Paths and Directories
7
2.10
Identify Segment Dependencies
7
2.11
Identify Computing Resources
7
2.11.1
Platform
7
2.11.2
Size
7
2.11.3
Operating System
7
2.12
Identify Icons
7
2.13
Identify File Menus
8
2.14
Identify FONTS
8
2.15
Register Segments
8
2.16
Quick Segmentation Guide
8
3
Segmentation for the UNIX Environment
11
3.1
Common Segmentation Procedures for UNIX
11
3.1.1
Installing DII COE Software
12
3.1.1.1
Installing the DII COE UNIX Kernel
12
3.1.1.2
Activate System Administrator and Security Administrator default Profiles
12
3.1.1.3
Installing Infrastructure and Common Support Application Segments
13
3.1.1.4
DII COE UNIX Developer’s Toolkit
14
3.1.1.4.1
DII COE Developers Toolkit Configuration
14
3.1.1.4.2
Installing the DII COE Developers Toolkit
16
3.1.2
Creating Core Segment Directory Structure
17
3.1.3
Including Public APIs in a Segment
18
3.1.4
Creating Core Segmentation Descriptor Files
18
3.1.4.1
SegName
19
3.1.4.2
Version
21
3.1.4.3
Release Notes
22
3.1.4.4
SegInfo
23
3.1.4.4.1
[Hardware]
23
3.1.4.4.2
[Security]
25
3.1.4.4.3
[COEServices]
25
3.1.4.4.4
[Community]
27
3.1.4.4.5
[Comm.deinstall]
28
3.1.4.4.6
[Compat]
28
3.1.4.4.7
[Conflicts]
30
3.1.4.4.8
[DCEDescrip]
30
3.1.4.4.9
[Direct]
32
3.1.4.4.10
[Icons]
34
3.1.4.4.11
[Menus]
35
3.1.4.4.12
[Network]
36
3.1.4.4.13
[Permissions]
37
3.1.4.4.14
[Processes]
38
3.1.4.4.15
[ReqrdScripts]
39
3.1.4.4.16
[Requires]
40
3.1.4.4.17
[SharedFile]
41
3.2
Developing SOFTWARE Segments
42
3.2.1
Validate Segment Structure
42
3.2.2
Load Segment Directories with Appropriate Files
42
3.2.3
Making the Segment Installable by the DII COE
43
3.3
Developing COTS Segments
44
3.3.1
Install COTS Product
44
3.3.2
Validate Segment Structure
44
3.3.3
Load Segment Directories with Appropriate Files
45
3.3.4
Enhancing the SegInfo Descriptor File for COTS
45
3.3.5
Making the Segment Installable by the DII COE
47
3.4
Developing DATABASE Segments
47
3.4.1
Installing the DIIDB Segment.
48
3.4.2
Build new Database Instance Segment
49
3.4.3
Enhance Segment Structure
50
3.4.4
Augment Segment Directories
51
3.4.4.1
Data Files
51
3.4.5
Modify SegInfo Segment Descriptor File
51
3.4.5.1
Hardware
51
3.4.5.2
Data
52
3.4.5.3
Database
52
3.4.5.4
Requires
55
3.4.6
Modifying the DEINSTALL and PostInstall Segment Descriptor Files
56
3.4.6.1
DEINSTALL
56
3.4.6.2
PostInstall
57
3.5
Developing ACCOUNT GROUP Segments
57
3.6
Developing DATA Segments
58
3.7
Developing PATCH Segments
58
3.8
Verifying the Segment
59
3.9
Testing that the Segment is Installable
61
3.10
Making Segment Install Media
63
3.11
Performing System Test of Installed Segments
64
4
Segmentation for the Windows NT Environment
65
4.1
Common Segmentation Procedures for Windows NT
65
4.1.1
Installing the DII COE Software
65
4.1.1.1
Installing the DII COE Windows NT Kernel
65
4.1.1.2
Installing Infrastructure and Common Support Application Segments
65
4.1.1.3
Installing the DII COE Windows NT Developer’s Toolkit
66
4.1.2
Creating Core Segment Directory Structure
68
4.1.3
Including Public APIs in a Segment
69
4.1.4
Creating Core Segmentation Descriptor Files
69
4.1.4.1
SegName
70
4.1.4.2
Version
72
4.1.4.3
Release Notes
73
4.1.4.4
SegInfo
74
4.1.4.4.1
[Security]
74
4.2
Full Segmentation for NT Software
75
4.2.1
Enhance Segment Directory Structure
75
4.2.2
Load Windows NT Directories with Appropriate Files
77
4.2.2.1
Executables Files
77
4.2.2.2
Data Files
77
4.2.2.3
Database Installation Script Files
77
4.2.3
Create/Enhance Segment Descriptor Files
77
4.2.3.1
SegInfo
78
4.2.3.1.1
[Hardware]
79
4.2.3.1.2
[AcctGroup]
80
4.2.3.1.3
[AppPaths]
81
4.2.3.1.4
[COEServices]
81
4.2.3.1.5
[Community]
81
4.2.3.1.6
[Comm.deinstall]
83
4.2.3.1.7
[Compat]
83
4.2.3.1.8
[Conflicts]
84
4.2.3.1.9
[Data]
85
4.2.3.1.10
[Database]
86
4.2.3.1.11
[Direct]
86
4.2.3.1.12
[FilesList]
86
4.2.3.1.13
[Help]
87
4.2.3.1.14
[Icons]
87
4.2.3.1.15
[Menus]
88
4.2.3.1.16
[Network]
89
4.2.3.1.17
[Permissions]
89
4.2.3.1.18
[Processes]
89
4.2.3.1.19
[Registry]
91
4.2.3.1.20
[Requires]
91
4.2.3.1.21
[SharedFile]
91
4.2.4
Making the Segment Installable by the DII COE
92
4.2.4.1
DEINSTALL
92
4.2.4.2
PostInstall
92
4.2.4.3
PreInstall
93
4.2.4.4
PreMakeInst
93
4.2.5
Verifying the Segment
93
4.2.6
Testing that the Segment is Installable
95
4.2.7
Making Segment Install Media
96
4.2.8
Test Installation of Segment Installation
97
4.3
Abbreviated Segmentation for NT COTS Software
99
4.3.1
Segment Directory Structure
99
4.3.2
Create/Modify Segment Descriptor Files
99
4.3.2.1
SegInfo
100
4.3.2.1.1
[Hardware]
100
4.3.2.1.2
[Conflicts]
101
4.3.2.1.3
[FilesList]
102
4.3.2.2
DEINSTALL
103
4.3.2.3
PreInstall
103
4.3.3
Verifying the Created Abbreviated Segment
105
4.3.4
Testing that the Abbreviated Segment is Installable
106
4.3.5
Making Abbreviated Segment Install Media
107
4.3.6
Test Installation of Abbreviated Segment Installation
108
4.3.7
Miscellaneous Comments on Abbreviated Segmentation
111
5
Submitting Segments for Integration and Testing
5-2
Appendix A: DII COE Runtime Compliance Checklist
1
A.1
Standards Compliance (Level 1)
4
A.2
Network Compliance (Level 2)
10
A.3
Workstation Compliance (Level 3)
13
A.4
Bootstrap Compliance (Level 4)
17
A.5
Minimal DII Compliance (Level 5)
21
A.6
Intermediate DII Compliance (Level 6)
43
A.7
Interoperable Compliance (Level 7)
54
A.8
Full DII Compliance (Level 8)
59

11Figure 3-1: DII COE Segmentation Process

Figure 3-2: DII COE UNIX Developer’s Toolkit Directory Structure
17
Figure 3-3: UNIX SOFTWARE Segment Development Directory Structure
42
Figure 4-4: Developer’s Toolkit Directory
68
Figure 4-1: DII COE Segmentation Process
75
Figure 4-2: Full Segment Development Directory Structure
77

8Table 2-1: Quick Segmentation Guide

Table 3-1: SegInfo Section Requirements by Segment Type
23
Table 4-1: SegInfo Section Dependencies per Segment Type
79

1 Introduction

The Defense Information Infrastructure (DII) Common Operating Environment (COE) serves as a foundation for building interoperable systems across the Department of Defense (DoD). The DII COE should be considered a “plug and play” open architecture designed around a client/server model. Functionality is easily added to or removed from the target system in small manageable units, called segments. Segments are defined in terms of functions that are meaningful to users, not in terms of internal software structure or size. Structuring the software into segments in this manner is a powerful concept that allows considerable flexibility in configuring the system to meet specific mission needs or to minimize hardware requirements for an operational site. Segmentation is the process of packaging application software into segments. This process includes conforming to a specified directory structure, creating segmentation descriptor files, and automating the installation of the software so that it can be installed with the tools provided by the DII COE runtime environment. Segmentation is necessary but not sufficient to achieve the required level of DII COE runtime compliance mandated in the Joint Technical Architecture (JTA) document. Site personnel perform field updates by replacing affected segments through the use of a simple, consistent, graphically oriented user interface.

1.1 Purpose

The purpose of this document is to provide an application software developer the technical steps necessary to segment developed or Commercial-Off-The-Shelf (COTS) software for execution in an infrastructure provided by the DII COE. The segmentation process documented here can be used for candidate DII COE components (i.e., part of the DII COE infrastructure) as well as mission applications that execute on top of the DII COE infrastructure.

1.1 Scope

The scope of this document covers the developer’s process from ordering and installing the DII COE and Developer’s Toolkit to submitting the segment to DISA for integration and testing. The primary scope of this document is to describe the segmentation process including generation of segmentation descriptor files; organizing software application files into the DII COE required directory structure; Using the DII COE developers toolkit tools to verify that the syntax of the segmentation files is correct; and the process of making an installable version of the segmented application. The segmentation process is provided for segments targeted for both UNIX and Windows NT platforms.

This document also provides guidance on how to break up a software application or data into multiple segments (Sections 2.3 - 2.5). Refer to the DII COE Integration & Runtime Specification (I&RTS) document, Section 5.4 for additional guidance on determining the number and types of segments to break an application into.

The document does not address each and every compliance requirement in the I&RTS. It does, however, provide some guidance in appendix A on the impacts that compliance requirements have on documentation, source code, and processes associated with a software application.

1.2 Related Documentation

Although this document is intended to be as self-contained as possible, developers should be familiar with the contents of the complete set of DII COE documentation. DII COE documentation is available on the DII COE Home Page (URL: http://spider.osfl.disa.mil/dii/). As a minimum, the following documents will be needed as reference guides during the segmentation process:

· DII COE Integration and Runtime Specification (I&RTS)

· DII COE User Interface Specifications

· Configuration Management Software and Documentation Delivery Requirements

· DII COE Configuration Management Plan

· DII COE Developer Documentation Requirements

· DII COE Consolidated Version Description Documents (OS Specific)

· DII COE Installation Guides (OS Specific)

· DII COE System Administrators Guide for Windows NT, HP and Solaris

NOTE: Be sure to always reference the latest version for the documents listed below, and be aware that changes occur often. Also, be certain that the documentation is the appropriate version for the DII COE software being used. All references to the I&RTS in this document refer to version 3.0, July 1997.

1.3 Document Structure

This document is structured as follows:

Section 1 of this document provides the scope, purpose, related documentation and structure for the document.

Section 2 provides a description of the activities that must take place prior to sitting down at the keyboard and starting the software packaging activities associated with segmentation.

Section 3 provides the process for creating a UNIX segment including the step-by-step procedures for creating the directory structure, populating directory structure, creating the segmentation descriptor files, and verifying that the segment is runtime compliant.

Section 4 provides the process for creating a full Windows NT segment including the step-by-step procedures for creating the directory structure, populating directory structure, creating the segmentation descriptor files, and verifying that the segment is runtime compliant.

Section 5 provides the process for creating an “Abbreviated” Windows NT COTS segment including the step-by-step procedures for creating the directory structure, populating directory structure, creating the segmentation descriptor files, and verifying that the abbreviated segment is runtime compliant.

Section 6 provides the process for creating application database segments including the step-by-step procedures for creating the directory structure, populating directory structure, creating the segmentation descriptor files, and verifying that the abbreviated segment is runtime compliant.

Section 7 provides information regarding the process of submitting a completed segment for integration, test and certification.

Appendix A provides a table of the I&RTS runtime compliance along with the potential impacts to a software application’s source code, documentation, or development process.

1.4 Document Notation Notes

· All entries to be typed at the UNIX command prompt or put into a UNIX file are shown using italics font throughout this document. Items which are underlined require the user to substitute either segment specific information or development environment specific information.

· The procedures contained in this document do not address how files are created and/or edited. It is assumed that editors and/or word processors are available on the development platforms (i.e., vi and emacs for UNIX, NotePad for NT, etc.). Files can be generated on any platform and transferred via file transfer protocol (FTP) or electronic media to the UNIX platform.

· Text that is gray in color indicates a capability that is documented in the I&RTS but is not yet supported by the DII COE Kernel or Developer’s toolkit. This document will be updated accordingly as new capabilities are made available in future releases of the DII COE software.

· Notes that require extra attention of the reader of this document are shown in double-line outlined gray boxes

1.5 How to Use this Document

The reader is encouraged to get familiar with the DII COE Integration and Runtime Specification (I&RTS) before attempting to segment a software application. Once familiar with the DII COE, the reader should focus attention to the PreSegmenting activities in section 2 of this document. At the end of that section, there is a table that contains a series of questions about the software application being segmented. The reader should read each of the questions and check off those sections of the document that they will have to pay more attention too. From there, the reader should read the appropriate sections and follow the instructions line-by-line. Reuse of already developed segmentation descriptor files is strongly encouraged. Previous versions of this document contained sample segmentation descriptor files in the appendices. These have been removed from this version in favor of using the sample segmentation descriptor files that come with the DII COE developers toolkit.

Once the mechanics of segmentation have been completed, the reader is encouraged to look at appendix A which contains a list of the I&RTS compliance requirements along with the potential impact to the software that is being segmented for the DII COE. It identifies any impacts to process, documentation or source code for each of the I&RTS requirements. This should be useful in preparing a segmented software application for the DII COE segmentation validation process.

2 Pre-Segmenting Activities

There are several activities that a developer must perform prior to starting the actual packaging steps required for segmentation. These activities include ordering the DII COE software, installing the software (including the Developer’s Toolkit and kernel) and identifying characteristics associated with the development environment of the application being segmented. The following paragraphs in this Chapter describe steps that should be taken before initiating the segmentation effort. The information resulting from these steps may also be used for registration of the segments with the appropriate DISA configuration and certification facility.

2.1 Perform PreSegmentation Assessment on the Candidate Software

The DII COE Home page (URL: http://sw-eng.falls-church.va.us/coe/docs/preseg/rca/v3-0/html/) contains the PreSegmentation Runtime Compliance Assessment tool that can be used to determine how much effort is required to achieve a desired level of DII COE runtime compliance and identify information that can be used in the segmentation process. These questions, that map to the questions in appendix B of the DII COE I&RTS, are designed to be used as a self-evaluation to be performed by software developers. The questions require knowledge of the operating system, COTS applications, security mechanisms, standards and protocols used, network connectivity, user interface, database management, and runtime environment of the application software under system. As such, systems and application programmers will be required to complete the entire set of questions.

2.2 Order DII COE and DII COE Developer’s Toolkit

The procedures for ordering DII COE software can differ depending on what domain the system for which segments are being created falls under (i.e. Global Command and Control System (GCCS), Global Combat Support System (GCSS)) and on what Service or Agency (Army, Navy, Air Force, Marines, etc...) has responsibility for that system. Distribution of DII COE software and mission applications segments that have been certified as runtime compliant with the DII COE I&RTS is authorized and managed by System, Agency and Service representatives. The DII COE Home page (URL: http://spider.osfl.disa.mil/dii/aog_twg/aog/970730_members.html) contains a list of the DoD Service and Agency representatives to the Architecture Oversite Group (AOG). These representatives should be contacted for requesting DII COE software.

NOTE:
The version of the DII COE Kernel to be installed must be compatible with the specific version of the operating system of the platform on which the DII COE kernel will be installed.

NOTE:
If the segment to be developed has dependencies on DII COE infrastructure and/or common support application segments, these dependent segments will have to be included in the request of DII COE software.

NOTE:
Some DII COE infrastructure and/or common support application segments require proof of valid licensing agreements before DISA can deliver them. Segments requiring a license are listed on the DII COE Home Page (URL: http://spider.osfl.disa.mil.).

2.3 Guidelines for Partitioning a Software Application into Segments

An application may be broken into two or more segments based on system architecture, maintainability and software architecture. Each segment is a separate, installable entity. It is the program office’s and developer’s responsibility to determine the number of segments to be created.

· System Architecture - If an application runs on several different machines and/or platforms simultaneously, each piece of this application must be a separate segment. For example, an application would have a segment for the database server and a segment for the client program.

· Maintainability - If areas of the application have different life-cycle or maintainability requirements (e.g., data table that needs to be updated often or a program early in its development cycle that is changing rapidly), separate segments might be warranted.

· Software Architecture - Applications using imbedded COTS programs should break out the programs into its own segment for maintainability and so other applications can use the COTS segment (e.g., PERL, TCL/TK and WISH). If two separate applications share common code, this should call for another segment to facilitate reuse of the segment’s functionality by the two or more applications.

· COTS Configuration Data – Applications that need to configure COTS applications should do so in a separate segment from the COTS segment. For Example: If a web browser needs to be configured to setup a home page, proxies, and other setup information, this should be accomplished by using a separate segment that modifies the COTS configuration files in a manor that does not prevent of software applications that are using the same COTS segment.

2.4 Guidelines for Partitioning Data into Segments

Segments may be created for data that is separate from a SOFTWARE, DATABASE or COTS type segment. The ability to load data as a separate segment is useful when there is classified data, optional data, large amounts of data, or data that is to be shared with other segments. The I&RTS identifies five categories of data:

· Global: Data available to every workstation, application and operator either from the local platform where the segment resides or from across the network.

· Database: The data segment discussed in section 2.3 used to provide the data fill for an application database segment. Such data segments are generally removed after successful load into the database server.

· Local: Data limited to an individual workstation and available to all applications and users.

· Segment: Data local to a workstation and managed and accessed by a single software segment.

· Operator: Data specific to a single user.

As mentioned in section 2.4, there will be any number of separate database data segments. Data included with a software segment, by definition, does not require a separate data segment. Of the remaining three categories of data (global, local and operator), the number of data segments that will be created for each category may vary depending on factors such as: classification, volume, usage, etc. Refer to paragraph 5.4.4 of the I&RTS for more information on data segment types.

2.5 Determine if the Segment is a COE Component or a Mission Application

Segments which will be COE components require approval from the DISA DII COE Chief Engineer. These segments will be submitted to the DISA OSF for design reviews, integration, test, configuration control and distribution. Mission applications are submitted to the appropriate Service and Agency facilities for certification. Candidate segments should be considered for submitting as COE components if they have a significant potential for software reuse and do not duplicate functionality with existing DII COE components. The process for submitting a segment as a DII COE segment is more extensive than the process for submitting mission application segments.

2.6 Determine Segment Type

Determine the type of segment that is being created. All 6 segment types may be COE segments or mission application segments. The 6 valid DII COE segment types are:

· ACCOUNT GROUP: A segment which serves as a template for establishing a runtime environment for individual operators. Account Groups can also serve to group a set of mission applications together from which “profiles” of functionality can be defined. The DII COE Kernel for UNIX platforms includes a Security Manager and System Administrator account groups. The DII COE Kernel for Windows NT includes a System Administrator Account Group. A Database Administrator account group is also available. Creating additional account group type segments requires special permission from the DII COE Chief Engineer.

· COTS: A segment totally comprised of vendor software. COTS segments may not include modifications or configuration data to work with a specific GOTS product.

· DATA: A segment composed of a collection of data files for use by the system or by SOFTWARE, DATABASE or COTS type segments.

· DATABASE: A segment that is to be installed on a database server under the management of a DBMS and ownership of the Database Administrator.

NOTE: The DATABASE segment type is not supported in DII COE V3.2 and prior releases

· SOFTWARE: A collection of executables and possibly static data items which extend base functionality and environment available to one or more account groups.

· PATCH: A segment containing a correction to apply to another segment, whether data or software. It consists of a subset of the files that made up the initial delivery of the segment.

Refer to paragraph 5 of the DII COE I&RTS to determine which type of segment is appropriate. This information will be used in determining which segment descriptor files are required.

2.7 Determine Segment Name

Select a name for the segment consisting of a string of up to 32 alphanumeric characters (spaces permitted). The segment name will be used in several of the segment descriptor files. Segment names must be unique with respect to all other segments created for the DII COE. This is achieved through the segment registration process.

2.8 Determine Segment Prefix

Select a prefix for the segment consisting of a string of up to 6 alphanumeric characters (no spaces). Although not required, the segment prefix should be named the same as the segment directory. It should be consistent with configuration management and segment registration process. The segment prefix selected cannot use reserved segment prefixes identified in section 5.3 of the DII COE I&RTS.

2.9 Identify Files, Paths and Directories

The developer should identify all of the files and directories required at run-time that make up a segment. The developer should also identify any specific location dependencies of those files. This list will come in handy when it is time to move segment files into required directories or to complete the [FilesList] section of the SegInfo segment descriptor file.

2.10 Identify Segment Dependencies

It is necessary in various sections of the SegInfo segment descriptor file to document the dependencies on hardware, Commercial Off the Shelf (COTS) / Government Off the Shelf (GOTS) segments needed by the segment to be created. In addition, there may be some specific requirements needed for testing and validating the created segment. These identified dependencies should be grouped by type (e.g., other segments, operating system/APIs, data, COTS products and hardware).
2.11 Identify Computing Resources

The developer should have the following resources identified.

2.11.1 Platform

The platform on which the segment is to operate must be identified. Select the platform from table 5-3 of the I&RTS, to make the identification.

2.11.2 Size

Identify size in kilobytes of memory and disk spaces:

· Disk - is the size of the segment, including all of its subdirectories, at install time. Also, an estimate should be made, if applicable, of future growth requirements for disk space.
· Memory - is the size of RAM required by the segment for normal operations under generally acceptable performance requirements established under quality assurance and/or user acceptance testing for software segments or identified in vendor literature for COTS segments.
· Partition - is used to identify required disk space on multiple disk partitions. Both initial and growth requirements should be determined. Partitions are often used when developing database application segments which define a particular set of partitions for performance reasons.
· Temporary Space - used to allocate temporary disk space. Some segments may require temporary space during the install process. The amount of temporary space will be factored in by the COEInstaller when determining if there is sufficient disk space to install the segment.
2.11.3 Operating System

It is necessary to identify the operating system type required by the segment. Select the operating system from table 5-3 of the I&RTS, to make the identification. Select which one of the values in the table applies to the segment to be developed. Identify dependencies upon a specific version of one of the individual operating system classes (e.g., Solaris 2.4).

2.12 Identify Icons

It is necessary to identify the files that are to be used to make available icons on the desktop to launch segment functions. The developer of the segment must identify the files that contain icon bitmaps and associated executables. The Programmers manual for the DII COE Kernel and Toolkit provide additional information on icons. This document is available via the DII COE Home Page.
2.13 Identify File Menus

It is necessary to identify the files that are to be used to make available menus on the desktop to launch segment functions. The Programmers manual for the DII COE Kernel and Toolkit provide additional information on menus. This document is available via the DII COE Home Page.
2.14 Identify FONTS

The developer should identify any font files, not already supported by the DII COE, required for the application. The DII COE supports a large variety of fonts and it is rare that a segment be required to additional fonts. Refer to the /h/COE/data/fonts directory on a platform on which a DII COE Kernel has been installed to a list of all of the font files supported by the DII COE.

2.15 Register Segments

Segment registration is the beginning of the process to have a segment approved for use in the DII COE either as part of the COE infrastructure or as a mission application executing on the COE infrastructure. The purpose of registration is to collect information about the segment for publication in a segment catalog. This “catalog” is maintained on the DII COE Home Page under configuration management. The segment catalog is available through an on-line HTML browser and contains the information about capabilities that exist within the DII COE. Searches can be performed on the segment catalog by developers to identify the potential for reusable segments, or by operational sites to find new mission applications.

The segment registration process is also performed via the configuration link off of the DII COE Home Page. This on-line process is to be used for both COE segments and mission application segments.
2.16 Quick Segmentation Guide

Table 2-2 provides references into the segmentation descriptor files for several different characteristics that may be applicable to a segment being developed. Check each question in the right hand column to determine if action in the second column applies. The right hand column provides a reference into the remainder of this document for the specific instructions to perform the action required by the middle column.

Table 2-1: Quick Segmentation Guide

If your segment...
Then you need to...
How-To Reference

is to be a COE component
Specify the “COE CHILD” attribute in SegName and get approval from the DII COE Chief Engineer.
UNIX: 3.1.4.1

NT: 4.1.4.1

is a COTS product
Use the “COTS” segment type in SegName and create the [FilesList] section of SegInfo.
UNIX: 3.1.4.1

NT: 4.1.4.1

NT Abbrv: 4.3

is an account group
Specify the ACCOUNT GROUP as the type in the SegName file. Include the [AcctGroup] section of SegInfo. Put any account group specific script files in the segment’s Script directory.
UNIX: 3.1.4.1, 3.5

NT: 4.1.4.1

requires Icons to be integrated with the DII COE desktop
Create [Icons] section of SegInfo and create segment specific Icon file.
UNIX: 3.1.4.4.11

NT: 4.2.3.1.14

requires Menus to be integrated with the DII COE desktop
Create a [Menus] section of SegInfo and create a segment specific Menu file.
UNIX: 3.1.4.4.12

NT: 4.2.3.1.15

has segment specific static data files
Put the files under the segments “data” directory.
UNIX: 3.1.2

NT: 4.1.2

has data to be shared with other segments
Create a separate segment and include the [Data] section of SegInfo.
UNIX: 3.6

NT: 4.2.3.1.9

requires segment unique environment variables
Create segment specific script files and put them in the segment “Script” directory and create the [ReqrdScripts] section of SegInfo.
UNIX: 3.1.4.4.16

NT: n/a

requires processes to be launched at boot time
Specify processes in the [Processes] section of SegInfo using the $BOOT keyword.
UNIX: 3.1.4.4.15

NT: 4.2.1.3.18

has background processes
Identify the processes by name in the [Processes] section of SegInfo using the $BACKGROUND keyword.
UNIX: 3.4.4.15

NT: 4.4.4.18

must add specific user accounts to the environment
Identify the users in the [COEServices] section of SegInfo using the $PASSWORD keyword.
UNIX: 3.1.4.4.3

NT: 4.2.3.1.4

installation must be performed with root privileges
Specify the install file using the $ROOT keyword in the [Direct] section of SegInfo.
UNIX: 3.4.4.9

NT: 4.4.4.11

modify system files
Use the commands in the [Community] section of SegInfo. The [Comm.deinstall] section of SegInfo must undo the changes made at install time.
UNIX: 3.1.4.4.4, 3.1.4.4.5

NT: 4.2.3.1.5, 4.2.3.1.6

requires a port or socket
Identify the port or socket in the [COEServices] section of SegInfo.
UNIX: 3.1.4.4.3

NT: 4.2.3.1.4

requires a specific disk partition setup
Specify the partition requirements in the [Hardware] section of SegInfo using the $PARTITION keyword.
UNIX: 3.1.4.4.1

NT: 4.2.3.1.1

requires other segmented software to be co-resident to execute correctly
Specify the required segments in the [Requires] section of SegInfo.
UNIX: 3.1.4.4.17

NT: 4.2.3.1.20

can’t be co-resident with a specific segment
Identify the conflicting segment in the [Conflicts] section of SegInfo.
UNIX: 3.1.4.4.7

NT: 4.2.3.1.8

NT Abbrv: 4.3.2.1.2

certain functions must be performed if user accounts are added or removed from the runtime environment
Specify files (executables or scripts) to be executed in the [Direct] section of SegInfo.
UNIX: 3.4.4.9

NT: 4.4.4.11

requires specific host table entries or server entries
Specify the host name and/or server in the [Network] section of SegInfo.
UNIX: 3.1.4.4.13

NT: n/a

includes public APIs that are to be delivered along with the segment.
Create man pages for each API.
UNIX: 3.1.3

NT: 4.1.3

has installation scripts
Call the installation scripts from PostInstall and/or PreInstall.
UNIX: 3.2.3, 3.3.5, 3.4.4

NT: 4.2.4

3 Segmentation for the UNIX Environment

The procedures in this section can be used to develop new segments comprised of newly developed and/or migrated software applications that are intended to execute in a UNIX runtime environment. These procedures assume a basic understanding of UNIX commands and the UNIX runtime environment. The basic process of segmenting an application is shown in Figure 3-1.

Figure 3-1: DII COE Segmentation Process

3.1 Common Segmentation Procedures for UNIX

The segmentation process for the UNIX environment is in some ways common across all segment types and in others has unique procedures to be followed for each segment type. The developer should first follow the procedures in paragraph 3.1 to install DII COE software, establish the core directory structure, provide required file for public APIs (if any), and creating the core set of required segmentation descriptor files. The developer should then proceed to the applicable paragraphs (3.2, 3.3, or 3.4) depending on the type of segment or segments being created. Finally, developers will proceed to paragraphs 3.5, 3.6, 3.7 and 3.8 to complete the segmentation process.

3.1.1 Installing DII COE Software

The developer has two options in establishing an environment for segmentation. Both options assume the prior installation of a DII COE UNIX operating system. Refer to the DII COE Home page to find the complete list of DII COE supported operating systems.

OPTION 1:
Load both the Developer’s Toolkit and the DII COE Runtime software on the same platform.

OR
OPTION 2:
Load the Developer’s Toolkit and DII COE Runtime software on separate platforms. This approach offers benefits because of the extra computer resources available to support the segmentation process.

3.1.1.1 Installing the DII COE UNIX Kernel

Regardless of the option selected above, the developer must load the DII COE Kernel onto a platform in order to have the ability to complete the development effort and to test the application software (once the segment is created) within the DII COE runtime environment.

Installation of the DII COE Kernel software is accomplished by following the step by step procedures in the DII COE Kernel Installation Guide (specific to the UNIX operating system). This document can be obtained through the configuration management link off of the DII COE Home Page (URL: http://spider.osfl.disa.mil.). A DII COE Kernel tape and applicable DII COE Kernel patch tapes are required to complete the installation process.

NOTE:
Refer to the Consolidated installation guide specific to the operating system being used for hardware requirements.

NOTE:
The version of the DII COE Kernel to be installed must be compatible with the specific version of the operating system of the platform on which the DII COE kernel will be installed.

NOTE:
Once the DII COE Kernel has been loaded and the system re-booted, all access will be controlled by the COE Common Desktop Environment (CDE). If access to a UNIX command line is required, the operator will have to perform the one of following:

· Login to the DII COE as “root” and select the TERMINAL option from the pull-up menu over the editor icon in the CDE tool bar.

OR

· Perform the steps in section 3.1.2 of this document to activate the SA_Default profile, select the application manager icon off of the CDE tool bar, select the DII Applications ICON, select the SA_Default profile icon, select the Xterm or Dterm icon and login into UNIX with a valid ID and password.

3.1.1.2 Activate System Administrator and Security Administrator default Profiles

When the DII COE Kernel is installed, there are no default profiles that are active upon logging into the DII COE with either of the two user accounts that are created by the DII COE Kernel. Thus none of the DII applications associated with the default profiles are accessible from the DII COE application manager. To activate the default profile for the system administrator (sysadmin) and security adminstrator (secman) accounts, perform the following:

Step 1:
Login to the DII COE as sysadmin.

Step 2:
Select the profile select icon (picture of a Head Profile with ‘?’) in the CDE tool bar.

Step 3:
Select the “SA_Default” profile and select the right arrow to move to from the available profile window to the selected profile window.

Step 4:
Select the “OK” button.

Step 5:
Select the “Exit” button from the CDE tool bar.

Step 6:
Login to the DII COE as secman.

Step 7:
Select the profile select icon (picture of a Head Profile with ‘?’) in the CDE tool bar.

Step 8:
Select the SSO_Default profile and select the right arrow to move to from the available profile window to the selected profile window.

Step 9:
Select the “OK” button.

Step 10:
Select the “Exit” button from the CDE tool bar.

3.1.1.3 Installing Infrastructure and Common Support Application Segments

If the segment being developed has dependencies on DII COE infrastructure and/or common support application segments, these dependent segments will have to be loaded in the DII COE runtime environment prior to testing the installation of the segment under development. These segments should have been requested at the same time as the request for the DII COE Kernel software was made. (Refer to section 2.2 of this document.) To install the additional DII COE segments, perform the following steps:

Step 1:
Login as sysadmin.

Step 2:
Insert the tape into the tape drive.

Step 3:
Select the “Segment Installer” option from the “Software” pull-down menu.

Step 4:
When the Segment Installer window comes up, verify that correct tape drive is selected for the source. If it is not, select a different device, host or both.

Step 5:
Select the “Read Contents” button and wait for the Segment Installer window to display the available segments on the tape.

Step 6:
Select the segment (under the “Select Software To Install” portion of the window) to be installed.

Step 7:
Select the “Install” button.

Step 8:
Wait for the segment to complete installation process. The segment will be marked with an asterik (‘*’) only if installation was successful.

Step 9:
Install other segments on the same media (if required) by repeating steps 6 - 8.

Step 10:
Install other segments on different media (if required) by repeating steps 5 - 9.

Step 11:
Exit the Segment Installer.

3.1.1.4 DII COE UNIX Developer’s Toolkit

The DII COE Development Toolkit is a tar formatted tape that contains tools required for segmentation, libraries for accessing DII COE runtime tools, and APIs for using DII COE provided services.

3.1.1.4.1 DII COE Developers Toolkit Configuration

The DII COE Developers Toolkit contains the following:

· COE Runtime tool API Libraries and Object Code

· Archive: libCOETools.a
· Archive: libCOE.a
· Archive: libCOECore.a
· Archive: libPrintClient.a
· Archive: libMEUtils.a
· Archive: libCOE_Is_Permitted.a
· Archive: libSSOProfiles.a
NOTE:
Refer to the DII COE Programmers Manuals for more information on using these APIs.

· C Header Files for Development Tools APIs

· Header File: DIITools.h
· Header File: MenuExec.h
· Header File: PrintAPI.h
· Header File: COEHFLog.h
· Header File: COE_Is_Permitted.h
· On-Line UNIX Man Pages for APIs

· Sample Segments

· SampleAcctGrp
· SampleAgg
· SampleAggChild
· SampleCOTS
· SampleDataGlobal
· SampleDataLocal
· SampleDataSegment
· SampleSW
· SampleSW.P1
· SampleSW2
· COE Development Tools. These tools are to be used by the developer for creating and validating segmentation descriptor files and for creating, testing and installing the segment. These tools are to be run from a UNIX command line prompt. The tools are:

· Executable File: CalcSpace
· Executable File: CanInstall
· Executable File: ConfigDef
· Executable File: ConvertSeg
· Executable File: MakeAttribs
· Executable File: MakeInstall
· Executable File: TestInstall
· Executable File: TestRemove
· Executable File: TimeStamp
· Executable File: VerUpdate
· Executable File: VerifySeg

NOTE:
See appendix C, section C-3 of the I&RTS, and the Version Description Document for the Developers Toolkit for more information on the DII COE developer’s tools.

NOTE:
Using the “-h” flag with any of these development tools will provide a help screen. Using the “-v” flag will display the version number of the tool.

NOTE:
It is expected that additional tools will be added to this subdirectory for working with database segments; e.g., a VerifySegDB tool is expected.

· Examples for using the DII COE Runtime Tools and Print Services. This subdirectory contains COE provided routines or shell scripts such as:

· COEAskUser_example.c

· COEFindSeg_example.c

· COEInstError_example.c

· COEMsg_example.c

· COEPromptPasswd_example.c

· COEPrompt_example.c

· COEUpdateHome_example.c
· EM_get_current_printer_desc.sh
· EM_get_current_printer_name.sh
· EM_get_current_printer_type.sh
· MakeFile

· VDirectPrintFile_example.c

· VDirectPrintMsg_example.c
· VPrintFile_example.c

· VPrintMsg_example.c
· close_printer_example.c
· get_printer_descriptions_example.c
· get_printer_name_example.c
· get_printer_type_example.c
· open_printer_example.c
· page_break_example.c
· write_printer_array_example.c
· write_printer_example.c
· MakeTOOLSEnv script file for establishing the required runtime environment to use the DII COE developer’s tools. This should be executed by any development user after logging in to the UNIX command line mode.

3.1.1.4.2 Installing the DII COE Developers Toolkit

Perform the following steps to install the DII COE Developer’s Toolkit:

Step 1:
Load the DEVELOPERS TOOLKIT tape into the tape drive of the development platform.
Step 2:
Access the command line prompt and login. Login as sysadmin as per the NOTE in paragraph 3.1.1 of this document if the development environment and runtime COE are on the same platform.

NOTE:
Loading the Developer’s Toolkit and DII COE assumes that the runtime environment is setup in a C shell environment. If you wish to use another shell, other script files will have to be modified instead of the .cshrc script file as noted below.

Step 4:
Make an /h directory if one does not already exist (COE runtime software not loaded) by typing:

>> mkdir /h

NOTE:
COE maybe installed anywhere. It is recommended that it be installed under /h to keep all of the DII COE related software under one directory.

Step 5:
Execute the following commands to install the Toolkit:

>> cd /h
>> tar xvf /dev/device
substituting the appropriate tape drive designation for “/dev/device”

NOTE:
The extraction process will build “/h/DII_DEV” directory. Subdirectories under each will also be dynamically established.

Step 6:
Update the environment variable LD_LIBRARY_PATH to include Motif libraries:

set LD_LIBRARY_PATH = ($LD_LIBRARY_PATH /usr/lib/Motif1.2)
Step 7:
Edit the .cshrc file for each user that will be accessing the DII COE Developer’s tools and add the following line:

source /h /DII_DEV/Scripts/MakeTOOLSEnv

This will establish the MACHINE, MACHINE_CPU, MACHINE_OS, and TOOLS_HOME environment variables.

Step 8:
In this MakeTOOLSEnv script, you will be asked to: “Enter the tools home dir>”. The default is /h/DII_DEV).. Press enter to accept the default or enter the appropriate pathname.

Figure 3-2: DII COE UNIX Developer’s Toolkit Directory Structure

3.1.2 Creating Core Segment Directory Structure

This paragraph describes the establishment of a development directory structure for a UNIX segment. It provides the necessary environment to build the required segment descriptor files, script files, man pages, icons, menus, fonts, application default files, header files, data files, and library files required for the segment.

The directory structure is similar to the runtime directory structure described in Chapter 5 of the DII I&RTS. The TOOLS subdirectory will have been created as a result of installing the Toolkit as described above.

Create a segment development directory structure as shown in Figure 3-3 using the following steps:

Step 1:
Change umask to set default read/write/execute permissions on all created files and directories to support segmentation by typing the following command:

>> umask 027

to give read/write/execute for the user and read/execute for other users within the same group. See a UNIX manual if a different setting is desired.

Step 2:
A subdirectory for segments being developed is required under /DEV. Each segment under development should be assigned a unique segment directory name and a segment prefix. A segment prefix must be defined for each segment. It is common to assign the same name for both the segment directory and segment prefix. However, note that the segment prefix will be used later in many of the segment descriptor files. Throughout this section, we assume the assignment of the segment prefix for naming the segment directory. Use the following commands to create the segment directory:

>> cd /h

>> mkdir DEV

>> cd DEV

>> mkdir SegmentPrefix
Step 3:
The runtime environment for all segment types requires the /SegDescrip, and /Integ subdirectories under each segment. Use the following commands to create these directories:

>> cd SegmentPrefix
>> mkdir SegDescrip Integ

Step 4:
The runtime environment for non-COTS segments requires the addition of the /Scripts, /bin, and /data subdirectories under each segment. If a COTS type segment is completely relocatable (not dependent on being loaded in a specific directory location) then add these directories as well. Use the following commands to create these directories:

>> cd SegmentPrefix
>> mkdir Scripts bin data

Step 5:
The runtime environment may need to include icons, menus, fonts or application default files. Icons and extensions to the COE desktop menus provide a means to launch an application from the DII COE desktop. Fonts may have to be added if the DII COE default font set does not support all of the applications’s required font types. Look in the /h/COE/data/fonts directory to view the default set of DII COE fonts. App-defaults are static files sometimes containing preferences and configuration parameters for an application that gets read when the application is launched. Create additional subdirectories, if needed, for the specific segment using the following commands:

>> cd /h/DEV/SegmentPrefix/data

>> mkdir icons menus fonts app-defaults

Step 6:
A segment may include other data subdirectories as required. Create these in the segment’s data directory using the mkdir command.

3.1.3 Including Public APIs in a Segment

If the segment has associated public Application Programmer Interfaces (APIs), certain support files will have to be included with the delivery of the segment to the DISA validation facilities. These support files will eventually be made available to users of the DII COE via media including a developer’s toolkit for the application. These support files will be needed by users of the APIs at compile time.

Step 1:
Extend the segment’s directory structure by adding the /man, /include, and /lib segment subdirectories. Use the following commands to create these directories:

>> cd /h/DEV/SegmentPrefix/data

>> mkdir man include lib

Step 2:
Copy header files for public APIs associated with the segment into the /h/DEV/SegmentPrefix/include directory. Public header files are those header files that define the calling sequence of the functions provided by the APIs that other segments will need access to.
Step 3:
Copy library object files for public APIs associated with the segment into the /h/DEV/SegmentPrefix/lib directory. Library object files are those files that contain the binary code implementing the functions provided by the APIs that other segments will need access to.
Step 4:
Copy man page files for public APIs associated with the segment into the /h/DEV/SegmentPrefix/man directory. Man files assist developers with using the public APIs and are made available through the Unix Man utility.
3.1.4 Creating Core Segmentation Descriptor Files

This section describes the procedures for generating the required segment descriptor files for all segment types. The files include SegName, ReleaseNotes, SegInfo, and VERSION. All of the required segmentation descriptor files are to be created in the segment’s /SegDescrip subdirectory. There are several other segmentation descriptor files which are optional depending upon the specific requirements of the segment being developed. Those other files will be discussed later in section 3 of this document.

NOTE:
The procedures in this document to create segmentation descriptor files assumes that the developer has expertise in using a UNIX editor such as “vi”, “emacs”, etc…

NOTE:
The content of the segmentation descriptor files is shown in a shadow box in the next several sections of this document. BOLD font indicates mandatory items to be included in the file. Underlined items indicate where the developer must substitute a value OR indicate a choice.

NOTE:
Gray text in the shadow box and the following annotations indicates capabilities that are not yet supported by the current release of the DII COE. This document will be updated to remove the shading each time a new release of the DII COE is available.

3.1.4.1 SegName

The SegName segment descriptor file is required for all segment types. The SegName segment descriptor file contains information identifying the segment being created. Most of this information should have been determined as a result of following the text in paragraphs 2.6, 2.7, 2.8 and 2.9 of this document. The keywords $TYPE, $NAME, and $PREFIX are required in each SegName file. Additional keywords depend on segment types. COE-component segments, for example, may not contain $SEGMENT, $PARENT, or $CHILD keywords. All other segments must have one $PARENT keyword or one or more $CHILD keywords, or one or more $SEGMENT keywords.

Aggregate segments are useful when a software application consists of several related segments. An aggregate segment speeds up the installation process by automatically installing all child segments when the parent segment is selected for installation by the operator. Aggregate segments may also be assigned to an account group. Thus the $SEGMENT can occur in the same SegName file with either a CHILD attribute and referenced parent segment or a PARENT attribute and referenced child segments.

Step 1:
Generate the SegName segment descriptor file using the following format:
FORMAT

$TYPE: SegmentType 1[:attribute2]

$NAME:name3

$PREFIX:SegmentPrefix4

$SEGMENTAcctGrpname:AcctGrpPrefix:AcctGrpHomeDir5

OR

$CHILD:ChildName:ChildPrefix:ChildHomeDir6

OR

$PARENT:ParentName:ParentPrefix:ParentHomeDir7

$LOADCOND15 Condition that must be satisfied

$KEY:COE16:Authorization Key Obtained from DII COE Chief Engineer

$EQUIV17:AliasNamer: AliasPrefixr

$EXCLUDE18AcctGrpname9:AcctGrpSegmentPrefix10:AcctGrphome dir11
EXAMPLE

SegName file for the Logistics Data Tracking System Segment.

$TYPE: SOFTWARE

$NAME: Logistics Data Tracking System

$PREFIX: LDTS

$SEGMENT: C4I:C4I:/h/AcctGrps/C4I

1
$TYPE:SOFTWARE: The $TYPE keyword must be assigned one of the following values: SOFTWARE, COTS, ACCOUNT GROUP, DATA, DATABASE, or PATCH. See paragraph 2.7 of this document to determine which to select. Most software developed for a government service or agency would be of the SOFTWARE type.

NOTE: The DATABASE type is not yet supported by the DII COE software. The work-around is to use the SOFTWARE type for database segments.

2
attribute: AGGREGATE , COE, CHILD and DCE. The AGGREGATE attribute is indicated if the segment being created is a collection of segments that are to be installed and removed as one unit. Only one of these collection of segments can be the parent segment. The PARENT keyword is used for this segment. All other segments in the group are child segments; the CHILD keyword is used for those related child segments.

Authorized segments may specify the attribute of being a COE-component segment. COE-component segments are similar to aggregate segments in that one segment serves the role of a parent segment and all others are children to that parent. The parent segment is similar to an account group segment which is affected by a collection of child component segments. However, there are important differences between COE-component segments and aggregate segments, and between the parent COE-component segment and account groups. For example, exactly one segment is designated as the parent COE component for the entire system (and its directory is /h/COE). Also, all segments identified as COE components must use the $KEY keyword. Section 5.4.8 of the I&RTS should be consulted for additional details.

Segment types that have the Web attribute are either Web servers or Web-application segments (e.g., Web clients). By definition, Web servers are also COE-component segments, so they have that implied attribute as well. Web applications may or may not be COE components, and so must indicate explicitly whether or not they are. Other than specifying the Web attribute, no additional segment descriptors are presently required beyond those identified for all other segments.

The Generic attribute is provided to allow a segment to indicate that it should be automatically made a member of all “regular” account groups. This means that the segment, unless it indicates otherwise, will be made a participant of all account groups except those which are character-interface-based (e.g., CharIF) or accessed through remote execution account groups such as RemoteX. This capability is provided for two reasons. First, some segments should be made a member of virtually every account group. An example is a Web browser which is set up to provide access to HTML help pages. Such a segment should be a member of the following: the System Admin account group; the Security Admin account group; the Database Admin account group; and the operator account group (e.g., GCCS, ECPN). It is convenient that this happen automatically without the need for the segment to explicitly list every account group it is to be a member of. Such segments do not need to express any affected account group in the SegName descriptor. Second, some segments developed for one system may be generally applicable to other mission systems, yet this may not have been realized when the segment was created. Using the Web browser example, if it is packaged for GCCS and it states GCCS is the affected account group, the segment’s SegName descriptor will need to be modified to use it for a different system such as ECPN or GCSS. Declaring the segment to have the generic attribute avoids this problem.

3
$NAME: name: The $NAME keyword must be included for all segment types. name is the segment name consisting of a string of up to 32 alphanumeric characters (spaces permitted).

4
$PREFIX:SegmentPrefix: The $PREFIX keyword must be included for all segment types. The SegmentPrefix is a string of up to 6 alphanumeric characters (no spaces) and should be consistent with configuration management and segment registration process. The use of reserved words to name segment prefixes is not allowed. It is recommended (not required) that segment prefixes are named using uppercase letters and be the same as the segment directory name. Cannot use reserved segment prefixes identified above. Should (but not required) be the same as the segment directory name and best if all caps are used.
5
$SEGMENT: AcctGrpname: AcctGrpPrefix: AcctGrpHomeDir: The $SEGMENT keyword is required for all SOFTWARE type segments and used to list the affected account groups that a segment is assigned to. All SOFTWARE segments must be associated with a an account group segment. There are two account groups (System Administration and Security Administration) that are delivered with the DII COE Kernel. There are at least two other account groups (Database Administrator, C4I) available as COE Segments. AcctGrpname is the Account group segment name affected by the segment. AcctGrpPrefix is the prefix of account group segment affected by the segment. AcctGrpHomeDir is the home directory of the account group affected by the segment. The affected account group is the account group for which the segment being created will be accessible through when creating “Profiles” of functional capability which one or more users/operators can assume. There can be multiple affected account groups and thus multiple $SEGMENT lines in this file.
6
$CHILD: ChildName:ChildPrefix:ChildHomeDir: DII COE Keyword is optional and used to list the children if and only if the AGGREGATE or COE attribute has been identified and the segment is a child segment. Multiple $CHILD lines can be used in this file. ChildName is the name of a child segment consisting of a string of up to 32 alphanumeric characters (spaces permitted). ChildPrefix is the prefix of the referenced child segment. ChildHomeDir is the home directory of the referenced child segment.

7
$PARENT: ParentName: ParentPrefix:ParentHomeDir DII COE keyword is optional and used to list the parent if and only if the AGGREGATE or COE attribute has been listed and the segment is the parent segment for the aggregate or COE component. . Only one line with $PARENT can be included in the file. ParentName is the name of a child segment consisting of a string of up to 32 alphanumeric characters (spaces permitted). ParentPrefix is the prefix of the referenced child segment. ParentHomeDir is the home directory of the referenced child segment.

15$LOADCOND Used to indicate that a CHILD segment in an aggegate is only to be loaded conditionally; e.g.., it is not already on disk or only if it is a later version.

16$KEY This keyword is required for all segments that have the attribute COE CHILD, COE PARENT, or WEB SERVER.

17$EQUIV. This optional keyword may appear multiple times. It is used to define aliases for a segment. It is primarily intended for account group segments and is to assist in migrating legacy segments from an earlier COE (e.g., JMCIS or GCCS COE) to the DII COE. Aliasname is the desired alias and Aliasprefix is the alias segment’s prefix (e.g., $EQUIV:JMCIS:JMC).

18$EXCLUDE This optional keyword is used with segments with a generic attribute. It is used to indicate to which account group(s) the generic segment is not to be automatically added.

NOTE:
Keywords $LOADCOND, $KEY, $EQUIV, and $EXCLUDE documented in the I&RTS are not supported at this time.

Refer to I&RTS section 5.5.1.10 of the DII COE I&RTS for more information on the SegName descriptor file.
3.1.4.2 Version
The VERSION segment descriptor file is required for all segment types. The descriptor file contains the time and date of when the segment was created. It must be created using an editor and then can be updated by using the DII COE TimeStamp tool from the DII COE Developers Toolkit.

Step 1:
Generate the VERSION segment descriptor file using the following format:

Format

version #1:date2
Example

VERSION file for the Logistics Data Tracking System Segment.

1.0.0.0:10/30/97

1
version # = developer specified version number of the segment. Section 3.1 of the I&RTS indicates the format for the primary version number. This format uses uses the form a.b.c.d where:

 a = major release indicating a significant change in the architecture or operation of the segment.

 b = minor release indicating the addition of new features but the fundamental segment architecture remains unchanged. A minor release may require re-linking to take advantage of updated API libraries.

 c = maintenance release in which new features may be added but the emphasis is on performance improvement and error correction.

 d = developer release number.

For COE component segments, a, b and c are assigned by DISA. For mission application segments in a COE-based system such as GCCS or GCSS, the program manager assigns the first three digits. Developers of the segment define the last digit. Version number digits are always incremented. This approach provides a clear and consistent way to compare successive releases of a segment. This version numbering approach permits the identification of a specfic version of dependent segments. See section 3.4.4.19 that describes the Requires section of the SegInfo segment descriptor file.

 Refer to I&RTS section 3.1 for additional information on version numbering.

2
date = date that the segment was created (or last modified) using the form mm/dd/yy.

NOTE:
Specification of the year in 4 digit format (as documented in the I&RTS) is not yet supported by the DII COE segmentation tools. Use a 2 digit year format.

NOTE:
There must be a carriage return after the first line. If not, the TimeStamp tool will not be able to be used to update the time and date.

Step 2:
Execute the TimeStamp tool to automatically update the VERSION descriptor file with the current time and date using the following command:
>> TimeStamp -p /h/DEV SegmentPrefix
Step 3:
Review the file on the screen and verify that the current date is contained in the file using the following command:

>> cat VERSION

Refer to paragraph 5.5.1.12 of the DII COE I&RTS for more detailed information.
3.1.4.3 Release Notes

The ReleaseNotes segment descriptor file is required for all segment types. The primary purpose of the ReleaseNotes descriptor file is to provide information that is important to the user installing the segment.

Step 1:
Generate the ReleaseNotes file and include information of interest to an operator. Do not include information on point of contacts, phone numbers or help information. Do include known problems that have been fixed, new features introduced by this release and any special instructions for installing the segment. This file cannot include tabs or embedded control characters.

Example

Release Notes for the Interservice Material Accounting and Control System (IMACS) Application software, Version 2.1 Released October 1997

The installer will be prompted for the IMACS IP address. Please refer to the IMACS

installation guide for the correct IP address for the IMACS host.

This segment requires the ORACLE Reports Runtime and Discoverer 2000 software. Also,

Cool:Gen must be installed prior to running IMACS.

Launching the IMACS application will automatically kick off Cool:Gen.

Refer to paragraph 5.5.1.7 of the DII COE I&RTS for more detailed information.
3.1.4.4 SegInfo

The SegInfo segment descriptor file is required for all segment types. The SegInfo file contains several types of information which are used to integrate and install the segment. Each type of information is contained in a separate section of the file. The sections required depend upon the type of segment being created. Table 3-3 shows the required and optional sections for each segment type. Use Table 2-2 of this document to determine which sections apply for a specific software application being segmented.

The Hardware and Security sections of SegInfo are required for all segment types. Some of the remaining sections described below are required for some segment types and some sections are optional for some segment types. Each SegInfo section includes a section heading in square brackets ‘[‘ and ‘]’ followed by keywords, commands, filenames, directory names, pathnames, etc.

Table 3-1: SegInfo Section Requirements by Segment Type

SegInfo Section
COTS
Acct. Grp
Software
Data
Database
Patch

AcctGroup
N
R
N
N
N
N

COEServices
O
O
O
O
O
O

Community
O
O
O
O
O
O

Comm.deinstall
O
O
O
O
O
O

Compat
O
O
O
O
O
N

Conflicts
O
O
O
O
O
O

Data
N
N
N
R
N
N

Database
N
N
O
N
R
O

DCEDescrip
O
N
O
N
N
N

Direct
O
O
O
O
O
O

FilesList
R
O
O
O
O
O

Hardware
R
R
R
R
R
R

Help
O
O
O
O
O
O

Icons
O
R
O
N
N
O

Menus
O
R
O
N
N
O

Network
N
N
N
N
N
N

Permissions
N
O
O
N
N
O

Processes
O
O
O
N
N
O

ReqrdScripts
N
R
O
N
N
N

Requires
O
O
O
O
O
O

Security
R
R
R
R
R
R

SharedFile
O
O
O
N
N
O

R - Required
O - Optional
N - Not Applicable

3.1.4.4.1 [Hardware]

The Hardware section of SegInfo is required for all segment types. It specifies the computing resources required by the segment. Specifically, it identifies the platform by using a predefined constant identified in section 2,the amount of disk space and growth disk space in kilobytes, any required disk partitions and expected growth in kilobytes, the operating system using a predefined constant identified in section 2, and the amount of temporary disk space required during installation.

Step 1:
Generate the Hardware section of SegInfo using the following format:

Format

[Hardware]

$CPU1:platform2

$MEMORY3:size4

$DISK5:size6[:reserve7] or $PARTITION8:diskname9:size10[:reserve7]

•

•

•

$PARTITION8:diskname9:size10[:reserve7]

$OPSYS11:operating system12

$TEMPSPACE13:size14
1
$CPU = Keyword used to establish platform type. The $CPU keyword must be defined for all segment types and can only appear one time. Select a value from Table 5-3 of the I&RTS.

2
platform = target runtime platform dependency identified using one of the values listed in table 5-3 of the I&RTS.

3
$MEMORY = Keyword used to define segment random access memory (RAM) requirements. The $MEMORY keyword is required for all segments except for DATA segments. This keyword can only appear one time in this section.

4
size (MEMORY) = amount of RAM required by the segment in kilobytes

5
$DISK = Keyword used to define segment disk requirements. $DISK and $PARTITION keywords are mutually exclusive, but one or the other must be included. $DISK can only appear one time.

6
size (DISK) = size of the segment (and all subdirectories) at install time expressed in kilobytes. Once this value is established, the COE tool CalcSpace can be used to automatically calculate the size of the segment and update the $DISK keyword size value accordingly.

7
reserve = amount of extra disk space in kilobytes reserved to accommodate future growth of the segment.

8
$PARTITION = DII COE Keyword used to define segment partitions.

9
diskname = explicit partition name (e.g., /home2) or an environment variable name of the form DISK1, DISK2, ...DISK99. The installation software will set the environment variables DISK1, DISK2, etc.... to the absolute pathname where space has been allocated. These environment variables are defined for PreInstall and PostInstall but not for DEINSTALL. $PARTITION keywords are assumed to be in sequential order so that environment variable DISK1 will refer to the first keyword encountered, DISK2 to the second, etc.

10
size (PARTITION) = size of the segment in kilobytes on a particular disk partition. Installation software does not allow a segment to be split across multiple disk partitions. However, the segment may do so in the PostInstall script; the use of multiple disk partitions is not recommended.

11
$OPSYS = DII COE keyword used to define operating system requirement of the segment

12
operating system = one of the DII COE supported operating systems identified in Table 5-3 of the I&RTS.

13
$TEMPSPACE = DII COE keyword used to define temporary space requirements of the segment. The $TEMPSPACE keyword requests that disk space be allocated for temporary use during the installation process.

14
size (TEMPSPACE) = amount of temporary disk space in kilobytes that are used during the installation process. If space is available, the installation software sets the variable COE_TMPSPACE to the absolute pathname where space is allocated.. If space is not available, an error message is displayed and segment installation fails. COE Installer automatically deletes the allocated space when segment installation is completed. Temporary space is allocated prior to executing Preinstall.

Refer to paragraph 5.5.15 of the DII COE I&RTS for more information on the Hardware section.

3.1.4.4.2 [Security]

The Security section of the SegInfo segment descriptor file is required for all segment types. The Security section contains a single entry indicating the highest classification level for the segment.

Step 1:
Generate the Security section of the SegInfo descriptor file using the following format:
Format

[Security]

classification level1
Example

[Security]

UNCLASS

1
classification level = UNCLASS, CONFIDENTIAL, SECRET, or TOP SECRET.

Refer to paragraph 5.5.30 of the DII COE I&RTS for more detailed information.

3.1.4.4.3 [COEServices]

The COEServices section of the SegInfo segment descriptor file is used to specify changes in services provided by the operating system. The COEServices section of the SegInfo segment descriptor file is optional for all segment types. This section has three keywords; one or more entries may follow each keyword. Keywords are: $GROUPS, $PASSWORDS, and $SERVICES. To add entries to the /etc/group file, the $GROUP keyword is used. To add entries to the /etc/passwd file, for example to establish file ownership, the $PASSWORDS keyword is used. The installation software inserts an “*” for the password field to ensure that these are system accounts rather than actual login accounts. Segments that need to add a user account must be approved in advance by the DII COE Chief Engineer. Such approval typically will only be given for COE-component segments. To add ports to the /etc/services file, the $SERVICES keyword is used. If the port number requested is already in use under another name, an error will be generated. Port number in the range 2000-2999 are reserved for COE segments. The $SERVICES keyword should seldom be necessary for DCE applications since endpoints are defined dynamically.

Step 1:
Generate the COEServices section of the SegInfo segment descriptor file using the following format:
Format

[COEServices]

$GROUPS

groupname1:group id2

groupname1:group id2

•

•

groupname1: group id2

$PASSWORDS

login name3:user id4:group id2:comment5:home dir6:shell7

login name3:user id4:group id2:comment5:home dir6:shell7

•

•

login name3:user id4:group id2:comment5:home dir6:shell7

$SERVICES[:servicescomment11]

socketname8:port9:protocol10{:alias12}

socketname8:port9:protocol10{:alias12}

•

•

socketname8:port9:protocol10{:alias12}

Example

[COEServices]

$GROUPS

Logistics:38

$PASSWORDS

loguser:1400:38:Logistics User:/h/AcctGrps/C4I/Scripts:/bin/csh

$SERVICES

LogMgr:2380:tcp

1
groupname = corresponds to the groupname as used in the UNIX /etc/group file. Note if the groupname already exists in the /etc/group file but with another group id, an error will be generated.

2
group id = corresponds to the group id as used in the UNIX /etc/group file; i.e, numeric group id value.

3
login name = corresponds to login name field as used in the UNIX /etc/passwd file.

4
user id = corresponds to the user id field as used in the UNIX /etc/passwd file; i.e., numeric user id value

5
comment = corresponds to the comment field as used in the UNIX /etc/passwd .

6
home dir = corresponds to the home dir field as used in the UNIX /etc/passwd file; i.e., initial wording directory following login.

7
shell = corresponds to the shell field as used in the UNIX /etc/passwd file; i.e., user desired shell.

8
socketname = name of the socket to be added to the /etc/services system file.

9
port = port number requested. Numbers 2000-2999 are reserved for COE segments.

10
protocol = tcp or udp.

11
servicescomment = an optional comment to be included in the /etc/services system file for the port by the COE installation software.

12
alias = symbolic name referring to the assigned port.
Refer to paragraph 5.5.3 of the DII COE I&RTS for more information.

3.1.4.4.4 [Community]

Many of the descriptor files direct the installation software to insert, delete, replace or otherwise alter blocks of text in ASCII files. The Community section of the SegInfo segment descriptor file is used to issue similar commands to the installation software for which no other segment descriptor file can be used. It is intended to be a “catch all” and should be used carefully, and only when there is no other way to accomplish the modifications required. VerifySeg will fail any segment which attempts to use a Community descriptor file to modify a file that is already handled by another descriptor file.. The Community section of the SegInfo segment descriptor file is optional for all segment types.

This section is primarily used to make changes to blocks of text in ASCII files. The blocks of text are delimited by braces ‘{‘ and ’}’ ; the opening and closing braces are on lines by themselves. When command requires that a textual search be done, embedded spaces and control characters are ignored during the search. Section 5.5.4 of the I&RTS contains various examples for using this section of the SegInfo file.

Step 1:
Generate the Community section of the SegInfo segment descriptor file using the following format:

[Community]

$FILE:filename1

$APPEND

{

stuff to be appended to filename

}

$FILE:filename1

$COMMENT:char2

{

comment out this text using the char character in file filename.

}

$FILE:filename1

$DELETE[ALL]

{

delete this block of text from file filename. If ALL is specified, delete all occurrences in the file filename.

}

$FILE:filename1

$INSERT[ALL]

{

Find the first occurrence of this text in file filename and insert the text that follows. If ALL is specified, insert the second block of text after every occurrence of the first block.

}

{

Insert this second block of text after the first block of text in the file filename.

}

$FILE:filename1

$REPLACE[ALL]

{

Find the first occurrence of this text in file filename and replace it with the text that follows. If ALL is specified, replace all occurrence of the first block of text with the second block of text.

}

{

Replace with this block of text in file filename.

}

$FILE:filename1

$SUBSTR: DELETE [ALL] | INSERT [ALL] | REPLACE [ALL]

{

When performing a textual search for these commands,search for a matching substring instead of a complete block of text. Text substring to be replaced or inserted are as indicated in the given second substring. If ALL is specified the substring rrplacement, deletion, or insertion is is to take place for each occurrence of the specified first substring.

}

{

text string to be deleted, inserted into or replaced with.

}

$FILE:filename1

$UNCOMMENT: char3

{

text to be uncommented using character char3.

}

1
filename = file that commands are to be acted on.

2
char (COMMENT) = character to comment out text strings/blocks.

3
char (UNCOMMENT) = character to delete for uncommenting text strings/blocks.

Refer to paragraph 5.5.4 of the DII COE I&RTS for more detailed information.

3.1.4.4.5 [Comm.deinstall]

The Comm.deinstall section of the SegInfo segment descriptor file is used to undo what was done by the community segment descriptor section of SegInfo file. It acts as a “catch-all” to insert, delete, append and replace blocks of text in ASCII files to return them to their original state prior to changes made by the commands in the Community section of SegInfo. The Comm.deinstall section of the SegInfo segment descriptor file is optional for all segment types. This section is not required for permanent segments even if the Community section is used.

Step 1:
Generate the Community section of the SegInfo segment descriptor file using the following format:

[Comm.deinstall]

This section uses commands that are the inverse of the commands used in the Community section of the SegInfo file. See section 3.4.4.5 for those commands.

Refer to paragraph 5.5.5 of the DII COE I&RTS for more detailed information.

3.1.4.4.6 [Compat]

The Compat section of the SegInfo segment descriptor file is used to indicate the degree to which backward compatibility is preserved with the newly released segment. The Compat section of the SegInfo segment descriptor file is optional for all segment types.

Step 1:
For segments which are backwards compatible with all previous releases of that segment, generate the Compat section of SegInfo by using the following format:

[Compat]

+ALL

For segments which are not backwards compatible with any previous releases of that segment, generate the Compat section of SegInfo by using the following format: (This is the default interpretation if Compat does not exist.)

[Compat]

-NONE

For segments which are backwards compatible with specific previous releases of that segment starting from an earliest release, even with specific version exceptions, generate the Compat section of SegInfo by using the following format: The $EARLIEST keyword is used to indicate the earliest version of the segment with which the current segment has compatibility. Without use of the $EXCEPTIONS keyword, it is assumed that the current segment has compatibiity with all segment version from the one identified with the $EARLIEST keyword. The $EXCEPTIONS keyword, if needed, will be followed by a list of specific segment versions in the sequence from the earliest to the current with which the current segment is not compatible. Each excepted version is placed on a separate line following the keyword.

[Compat]

$EARLIEST

version1

$EXCEPTIONS

version11

version 21

•

•

version n1
1version = specific version number of the DII COE segment in COE version format “a.b.c.d”. When a digit is omitted from the version number, or an asterisk is in place of the digit, there is an assumed wildcard in that digit position. That is, any digits would be acceptable in that position.

For segments which are backwards compatible with SPECIFIC previous releases of that segment, generate the Compat section of SegInfo by using the following format:

[Compat]

 $LIST

version 11

version 21

•

•

version n1
NOTE:
Version identifiers must have the appropriate “:Pn” values to specify specific patches required to satisfy current segment compatibility requirements.. For example, 2.9.1:P4:P5 means that the current version is backwards compatible with 2.9.1, but only if patches P4 and P5 have been applied.

Refer to paragraph 5.5.6 of the DII COE I&RTS for more detailed information.

3.1.4.4.7 [Conflicts]

Two segments may conflict with one another so that one or the other, but not both, can be installed on the same platform. The Conflicts section of the SegInfo segment descriptor file is used to specify known inter-segment conflicts. The Conflicts section of the SegInfo segment descriptor file is optional for all segment types.

Step 1:
Generate the Conflicts section of the SegInfo segment descriptor file by using the following format:

[Conflicts]

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]

•

•

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]

1
Segment name = name of conflicting segment as determined by the SegName descriptor file.

2
SegmentPrefix = conflicting segment’s segment prefix.

3
home dir = conflicting segment’s home directory.

4
version = specific version of conflicting segment.

5
patch = specific patches of conflicting segment.

Refer to paragraph 5.5.7 of the DII COE I&RTS for more detailed information.
3.1.4.4.8 [DCEDescrip]

This section of the SegInfo file is used to define characteristics of DCE servers. It is not required for DCE client applications. It is expected that developers will normally provide a single DCE server in a segment. The keywords to be used in this section to describe the server are: . $DCESERVERS, $DCEBOOT, $DCEDEMAND, $DFSFiles and $KEY.

$DCESERVERS. This keyword is used to list the servers that are provided by the segment (usually only one). The server executables are expected to be in the segment’s bin subdirectory. The keyword is followed by a list of the server names, interface attributes, security attributes and configuration attributes.

In the non-DCE world, this name is put in the $SERVERS keyword. The purpose of $SERVERS is so that a client does not have to reference the actual hostname of a server. DCE servers are not tied to a specific host and hence do not use the $SERVERS keyword (contained in the Network section of the SegInfo file). The $DCESERVERS keyword is used instead to list the services offered by a segment with a DCE server. The $SERVERS and $DCESERVERS keywords are mutually exclusive. Also, the $SERVICES keyword in the COEServices section of the SegInfo file should not be necessary for DCE applications, since endpoints are defined dynamically

$DCEBOOT. This keyword is followed by a list of servers that are to be started by the dced process at system boot.

$DCEDEMAND. This keyword is followed by a list of servers that are to be started by dced process on demand.

$DFSFiles. This keyword is similar in purpose to the FilesList section of the SegInfo file. It is used instead of FilesList section because the files listed with this keyword are maintained by DFS and not by the native operating system. The keyword is followed by a list of filenames in the form: All filenames listed under this keyword must start with /.../cellname/fs/.

$KEY. All boot time processes, including those started by dced, require approval by the DII COE Chief Engineer. In addition, dced must run as root under all circumstances. Therefore, if the $DCEBOOT or $DCEDEMAND keyword is used in this section, the section must also include the $KEY keyword as well. Also, if a CONFIG attribute is added, the $KEY keyword must be used. key is the authorization key provided by the DII Chief Engineer for COE component segments (or by the Program Chief Engineer for other segments. The obtained authorization key value will apply to all servers within this segment.

$DCESERVERS1
SERVER2 servicename3:principal4:uid5:gid6:home7:starton8

•

•

SERVER2 servicename3:principal4:uid5:gid6:home7:starton8
INTERFACE9 servicename3:interfacename10:UUID11

•

•

INTERFACE9 servicename3:interfacename10:UUID11
RPCSECURITY12 servicename3:interfacename10:security13

•

•

RPCSECURITY12 servicename3:interfacename10:security13
CONFIG14 servicename3:attribute15:scope16:UUID11
$DCEBOOT

server process 117 {parameters18}

server process 117 {parameters18}

•

•

server process 117 {parameters18}

$DCEDEMAND

server process 117 {parameters18}

server process 117 {parameters18}

•

•

server process 117 {parameters18}

$DFSFiles 19
filename 20: access 11

•

•

filename 20: access 21
$KEY:DCE22:key23
1
$DCESERVERS keyword used to identify the list servers that are provided by the segment.

2
SERVER = constant value indicating that this line contains descriptive information about a DCE server.

3
servicename = name of the service provided by the DCE server or name of a service implementing a specific interface.

4
principal = DCE account for the server. Include a $PASSWORDS keyword in the COEServices section of the SegInfo file to establish a UNIX userid for each server principal.

5
uid = the UNIX account for the server.

6
gid = the UNIX group id for the server.

7
home = the UNIX home directory for the server.

8
starton = conditions upon which the DCE server should be started; one of the following values should be used for this parameter: AUTO, EXPLICIT, BOOT, FAILURE.

9 INTERFACE = constant value indicating that this line contains descriptive information about an interface.

10
interfacename = name of the interface, and

11 UUID = the universal unique id assigned to this interface.

12
RPCSECURITY = constant value indicating that this line contains descriptive information about the security attributes of the DCE server interface. Note: The Permissions section of the SegInfo file may be used to implement security, but it is preferable to implement the a DCE-based application using DCE security services

13
security = the maximum security supported by the server on the identified interface.

14
CONFIG = constant value indicating that this line contains descriptive information about extended configuration attributes for a DCE server

15
attribute = the name of the attribute in the extended schema. The name of an attribute specfic to this segment must include the segment prefix; e.g., SegPrefix_attributename.

16
scope = the scope of the attribute (either COE or SERVER)

17
server process = name of DCE server process to be started.

18
parameters = optional DCE server process dependent parameters.

19
$DEFFiles = keyword indicating that the following list identifies files that are managed by a distributed file system rather than by the platform’s operating system.

20filename = DFS filename used by the segment. All filenames must start with /…/cellname/fs/.

21
access = operations that can be performed on the DFS file indicated using RWX characters.

22DCE = constant value indicating that the indicated key value is for a DCE-based application.

22key = the authorization key provided by the DII COE Chief Engineer.

Refer to sections 5.5.10 and 8.3 of the DII COE I&RTS for more information.

3.1.4.4.9 [Direct]

The Direct section of the SegInfo segment descriptor file is used to issue special instructions to the install software. If the segment is part of an aggregate, the directives below apply only to the segment in whose SegDescrip subdirectory the directives appear. The Direct section of the SegInfo segment descriptor file is optional for all segment types.

Step 1:
Generate the Direct section of SegInfo by using the following format:

[Direct]

$ACCTADD1: executable2

$ACCTDEL3: executable4

$NOCOMPRESS5

$REBOOT6

$REMOTE7 [:XTERM | :CHARBIF]

$ROOT8:PostInstall | PreInstall | DEINSTALL

$CMDLINE9:

$KEY10:request11:key12

•

•

$KEY10:request11:key12

$PROFADD13: executable14

$PROFDEL15: executable16

$PROFSWITCH17: executable18

$SUPERUSER191

[Direct]

$NOCOMPRESS

$REBOOT

$ROOT:PostInstall

2
$ACCTADD = DII COE keyword used to identify executables to be run each time a user account is added to the system. VerifySeg will flag use of this keyword as a warning to highlight that it is being used. Prior permission must be given by the Chief Engineer before this keyword can be used. $ACCTADD requires the $KEY keyword as well.

2
executable (ACCTADD) = executable file to be executed when an account is added.

3
$ACCTDEL = DII COE Keyword used to identify executables to be run each time a user account is deleted from the system. VerifySeg will flag use of this keyword as a warning to highlight that it is being used. For security reasons, prior permission must be given by the Chief Engineer before this keyword can be used $ACCTDEL requires the $KEY keyword as well.

4
executable (ACCTDEL) = executable file to be executed when an account is deleted.

5
$NOCOMPRESS = DII COE keyword used to suppress compression of the segment by the MakeInstall tool. If this keyword is not used in this section, the MakeInstall tool automatically compresses segments to reduce the amount of space required on disk or tape, and to reduce the download time.

6
$REBOOT = DII COE keyword used to have COE installation software perform an automatic reboot after the segment installation is complete. The operator is provided an opportunity to override the reboot at install time.

7
$REMOTE = DII COE keyword to allow remote execution of all functions of the segment. At installation time, the installation software will note that this segment can be executed remotely. If the XTERM attribute is present, it indicates that the segment can also be accessed via an “xterm” capability, and output will be routed to the display surface pointed to by the DISPLAY environment variable setting. If the CHARBIF attribute is present, it indicates that the segment supports a character-based interface. CHARBIF and XTERM will normally be mutually exclusive. By default, segments are assumed to be locally executable only.

8
$ROOT =. The presence of this keyword indicates that the specified segment descriptor file must be run with root privileges. A separate $ROOT entry is required for each descriptor file that must be run with root privileges. VerifySeg will flag use of this keyword as a warning to highlight that it is being used. For security reasons, prior permission must be given by the Chief Engineer before this keyword can be used. $ROOT requires the $KEY keyword as well.

9
$CMDLINE = DII COE keyword that must be inserted in this section if the segment provides command line access to the segment. $CMDLINE requires the $KEY keyword as well.10

10$KEY = Several of the keywords included in this section of the SegInfo file require authorization by the DII COE Chief Engineer. The $KEY keyword must be provided for each requested permission.

11request = indicates type of request being made. Requests are grouped by the type of request being made (e.g., security-related, installation-related) and may be one of the following values:

- INSTALL: for permission to run PostInstall, PreInstall, and DEINSTALL with root permission

ACCTS: to use any of the account creation/deletion/switch keywords (e.g., for $ACCTDEL, $ACCTADD, $PROFADD, $PROFDEL, and $PROFSWITCH)

CMDLINE: to use the $CMDLINE keyword

SUPERUSER: to use the $SUPERUSER keyword

A separate authorization key and $KEY entry is required for each request group, but the key applies to any and all requests within that group.
12key is the authorization key provided by the Chief Engineer for each request group.

13$PROFADD = DII COE keyword used to identify executables to be run each time a profile is added to the system. VerifySeg will flag use of this keyword as a warning to highlight that it is being used. Prior permission must be given by the Chief Engineer before this keyword can be used. $PROFADD requires the $KEY keyword as well.

14
executable (PROFADD) = executable file to be executed when a profile is added.

15
$PROFDEL = DII COE keyword used to identify executables to be run each time a profile is deleted from the system. VerifySeg will flag use of this keyword as a warning to highlight that it is being used. For security reasons, prior permission must be given by the Chief Engineer before this keyword can be used $PROFDEL requires the $KEY keyword as well

16executable (PROFDEL) = executable file to be executed when a profile is deleted.

17$PROFSWITCH = DII COE keyword used to identify executables to be run each time a user logged in switches from one profile to another. The executable is not run when the user first long in; it is run only when a profile switch is made. VerifySeg will flag use of this keyword as a warning to highlight that it is being used. Prior permission must be given by the Chief Engineer before this keyword can be used. $PROFSWITCH requires the $KEY keyword as well.

18executable (PROFSWITCH) = executable file to be executed when a logged-in user switches from one profile to another .

19
$SUPERUSER = DII COE keyword that must be inserted in this section if the segment provides or requires, via command line or otherwise, superuser privileges. $SUPERUSER requires the $KEY keyword as well.

Refer to section 5.5.12 of the DII COE I&RTS for more information.
3.1.4.4.10 [Icons]

It may be necessary to create icons for use in launching the executables of a segment. The Icons section of the SegInfo segment descriptor file is used to identify the file in the segment’s /data/icon directory that defines the icon(s) that are made available on the desktop to launch segment functions. The Icons section of the SegInfo segment descriptor file is required for Account Group segment types and optional for COTS, Software, and Patch segment types.

.

Step 1:
Generate the Icons section of the SegInfo segment descriptor file using the following format:

[Icons]

icon file1
1
icon file = name of file in the Segment’s /data/icons directory that associates segment executables with icons. The filename can be up to 32 characters.

Step 2:
Generate the icon file in the SegmentPrefix\data\Icons directory for the segment if the segment is GOTS or if a COTS product is being created as a software segment. The following format is to be used:

window title1: icon image file/path2 : executable path3 : comments4
1
window title = title placed in the application window.
2
icon image file/path = path and filename of the icon image file.
3
executable file/path = path and executable filename to be launched by selecting the icon.
4
comments = comment field to describe the icon

Refer to paragraph 4.4.2 of the DII COE Programming Guide for more detailed information on adding icons to the COE.
3.1.4.4.11 [Menus]

The Menu section of the SegInfo segment descriptor file is used to add menu entries required by a segment. The entry in the SegInfo file refers to menu files generally contained in the /h/DEV/SegmentPrefix/data/menus directory. The menu files are formatted to pass menu information to the Common Desktop Environment (CDE) so that pull down menus, cascade menus, and menu items can be created and appended. The Menus section of the SegInfo segment descriptor file is used to list the files under the /data/menus directories defining menus to be used by and extended by the segment. The Menus section of the SegInfo segment descriptor file is required for Account Group segment types and optional for COTS, Software, and Patch segment types.

Step 1:
For Account Group segments, generate the Menus section of the SegInfo segment descriptor file using the following format:

[Menus]

menu file 11

menu file 21

•

•

menu file n1
For COTS, Software, and Patch segments, generate the Menus section of the SegInfo segment descriptor file with the following format:

[Menus]

menu file 11:[affected menu file2]

menu file 21:[affected menu file2]

•

•

menu file n1:[affected menu file2]

1
menu file = name of menu file listed in the segment’s /data/menus directory.

2
affected menu file = the name of the account group that should be updated by the segment’s menu file. Affected menu file is optional. If no affected menu file is listed, then menu file is simply added to the list of menu files which comprise the account group’s menu templates.

Refer to the DII COE Programming Guide and Executive manager API documentation for specific information on how to construct the menu files.

Refer to paragraph 5.5.19 of the DII COE I&RTS for more detailed information.

3.1.4.4.12 [Network]

The Network section of the SegInfo segment descriptor file is used to describe network-related parameters. The Network section of the SegInfo segment descriptor file is optional for segments with the COE CHILD or COE PARENT attributes. Use of this section requires prior approval by the DII COE Chief Engineer and its use is restricted to COE-component segments, except for DCE Servers which are not necessarily COE-component segments.

Step 1:
Generate the Network section of SegInfo by using the following format:

[Network]

$HOSTS1

LOCAL2 | REMOTE2 :IP address3:name4{:alias5}

$MOUNT6

hostname7:NFS mount point8:target dir9

$NETMASK10:mask11

$SERVERS12

server 113

server 213

•

•

server n13
$KEY24::network25: key26
1
$HOSTS = DII COE keyword used to establish host names. Although segments may add IP addresses and host names, segments should rarely need to directly add host table entries. VerifySeg will issue a warning for any segment which adds host table entries. If the IP address specified with the $HOSTS keyword already exists in the platform’s hosts file, the name and alias entries are added as alias names. If LOCAL is specified with this keyword, the entry is made only to the local network hosts file. If REMOTE is specified, the entry is applied to the NIS/NIS+ or DNS server. If REMOTE is specified but neither NIS/NIS+ or DNS are installed, the entry will default to LOCAL

2
LOCAL is used if the entry is to be made only to the local hosts file. REMOTE is used if the entry is to made to the NIS+ or DNS server.

3
IP address = used in the UNIX /etc/hosts file.

4
name = hostname used in the UNIX /etc/hosts file.

5
alias = host alias name used in the UNIX /etc/hosts file.

6
$MOUNT = DII COE keyword used to set NFS mount points.

7
hostname = name of the workstation on the network.

8
NFS mount point = file partition to mount.

9
target dir = where to mount the requested file partition on the local machine. If target dir does not exist on the local machine, it will be created.

10
$NETMASK = DII COE keyword is used to establish the network mask. If two COE-component segments attempt to set the netmask, the netmask of the last segment prevails.

11
mask = subnet mask.

12
$SERVERS = DII COE keyword used to establish servers providing COE services by symbolic name. This should not include DCE -based servers. After installation, these servers are registered within the established COE environment so that other segments can obtain their location through the COEFindServer function.

13
server = symbolic name of the servers that the segment contains.

14
$KEY= DII COE keyword used to indicate the authorization key received from the DII COE Chief Engineer. This entry is required only once within the section. It applies to all entries within the section.

15
network = literal value used to indicate that this key value applies to all entries within the Network section of the SegInfo file.

16
key = the value of the authorization key received from the DII COE Chief Engineer.

Refer to paragraph 5.5.20 of the DII COE I&RTS for more information.

3.1.4.4.13 [Permissions]

The Permissions section of the SegInfo segment descriptor file is used to describe objects and permissions to grant or deny for the objects. The Permissions section of the SegInfo segment descriptor file is optional for Account Group, Software and Patch segment types.

Step 1:
Generate the Permissions section of SegInfo by using the following format:

[Permissions]

object name 11:permission abbreviation2:permission3

object name 21:permission abbreviation2:permission3

•

•

object name n1:permission abbreviation2:permission3
1
object name = item to be controlled.

2
permission abbreviation = single character abbreviation for the permission (A = Add, D = Delete, E = Edit, P = Print, R = Read, V = View, X = Transmit). Additional abbreviations may be used as required.

3
permission = permission type of access to grant or deny (Add, Delete, Read, etc...).

Refer to paragraph 5.5.21 of the DII COE I&RTS for more detailed information.
3.1.4.4.14 [Processes]

The Processes section of the SegInfo segment descriptor file is used to identify processes associated with the segment. The Processes section of the SegInfo segment descriptor file is optional for Account Group, COTS, Software and Patch segment types. Output from the process is piped to /dev/null.

Step 1:
Generate the Processes section of SegInfo by using the following format:

[Processes]

$PATH1:pathname2

$BOOT3

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5}

$BACKGROUND6

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5}

$SESSION7

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5}

$SESSION_EXIT8

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5}

$PERIODIC9:hours

$RUN_ONCE10

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5

$PRIVILEGED11

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5

$KEY2:Processes13:key14
1
$PATH = DII COE keyword used to establish directory containing PROCESS executables.

2
pathname = the path of the directory containing the process file. Default pathname is segment’s bin subdirectory. .

3
$BOOT = DII COE keyword used to identify processes that are to be launched when the system is booted.

4
process = name of PROCESS executable to launch.

5
parameters = optional PROCESS dependent parameters.

6
$BACKGROUND = DII COE keyword used to identify background processes.

7
$SESSION = DII COE keyword used to identify processes that are to be launched when a user starts a session.

8
$SESSION_EXIT = DII COE keyword used to identify processes that run prior to terminating a login session.

9
$PERIODIC = DII COE keyword used to identify processes that are to be run at some specified interval (in hours). This keyword may be used multiple times in this section if there are multiple individual processes to be run at varying periodic times. If a constant period is used for multiple processes, then all such processes could be listed under the one instance of the keyword with the appropriate hourly value.

10
$RUN_ONCE= DII COE keyword used to identify “one-shot” processes that are to run the next time the system is started. Such processes are to be run only the next time the system is started and never thereafter.

11
$PRIVILEGED= DII COE keyword used to identify processes that are to run in privileged (i.e., root) mode.

12
$KEY= DII COE keyword used to identify an authorization key from the DII COE Chief Engineer. Use of boot-time, background, periodic, privileged, and “one shot” processes requires authorization by the Chief Engineer. The authorization key applies to all requests within the Processes section of the SegInfo file.

13Processes = Constant value indicating that this key is pertinent to the Processes section of the SegInfo file.

14 key= authorization key value obtained from DII COE Chief Engineer.

Refer to paragraph 5.5.25 of the DII COE I&RTS for information.
3.1.4.4.15 [ReqrdScripts]

The ReqrdScripts section of the SegInfo segment descriptor file is used to identify the script files that will be used to establish (for account group segments) or extend (all other types of segments) the runtime environment. The ReqrdScripts section of the SegInfo segment descriptor file is required for Account Group segment types and optional for Software segment types.

For Account Group segment types, generate the ReqrdScripts section of the SegInfo file using the following format:

[ReqrdScripts]

script name 11:C2 | L3

script name 21:C2 | L3

•

•

script name n1:C2 | L3
1
script name = name of the script in the affected account group’s script subdirectory. Script file name can be up to 32 characters.

2
C = designates that the script file will be copied to the created user’s login directory. These script files are to be located in the /h/AcctGrps/AccountGroup/Scripts directory where AccountGroup is the name of the Account Group. Script file name can be up to 32 characters.

3
L = designates that the script file will be symbolically linked to the created user’s login directory. These script files are to be located in the /h/AcctGrps/AccountGroup/Scripts directory where AccountGroup is the name of the Account Group. Script file name can be up to 32 characters.

For other segment types, generate the ReqrdScripts section of the SegInfo file using the following format:

 [ReqrdScripts]

script name 11:env ext name2
script name 21:env ext name2

•

•

script name n1:env ext name2
1
script name = name of the script in the affected account group’s script subdirectory. Script file name can be up to 32 characters.

2
env ext name = name of an environment extension file in the present segment’s ../Scripts directory. Script file name can be up to 32 characters.

Refer to paragraph 5.5.28 of the DII COE I&RTS for more detailed information.

3.1.4.4.16 [Requires]

The Requires section of the SegInfo segment descriptor file is used to identify segment dependencies. Although the Requires section of the SegInfo segment descriptor file is optional for all segment types, it is highly recommended that it be included with a commented statement indicating “no dependencies exist” if appropriate.

Segments will not be loaded until all segments on which they depend are loaded. For this reason, the parent segment for an aggregate must not list child segments in the Requires descriptor. The parent segment for a child does not need to be listed in the Requires section of the SegInfo file for a child segment descriptor because the dependency is implied by the naming of the aggregate parent in SegName file.

Also note that the Requires section of the SegInfo file must be used to indicate external application database segments whose objects are listed under the $REFERENCES keyword in the database section of the SegInfo file for an application database segment (see section 3.4.4.10). This section is also used by segments which have a dependency upon the shared file (see section 3.4.4.20).

Step 1:
Generate the Requires section of the SegInfo segment descriptor file by using the following format:

[Requires]

[$HOME_DIR1:pathname2]

segment name 13: SegmentPrefix4:home dir5:[version{:patch}]6

segment name 23: SegmentPrefix4:home dir5:[version{:patch}]6

•

segment name n3: SegmentPrefix4:home dir5:[version{:patch}]6
{ 7

segment name 13: SegmentPrefix4:home dir5:[version{:patch}]6

segment name 23: SegmentPrefix4:home dir5:[version{:patch}]6

$OR7

segment name n3: SegmentPrefix4:home dir5:[version{:patch}]6
} 7
1
$HOME_DIR = DII COE keyword to assign pathname. The optional $HOME_DIR keyword is used in situations where a segment must be loaded onto the disk in a particular place. This technique should be avoided.

2
pathname = directory path of the segment home directory. See comment in footnote 1 above.

3
segment name = name of the segment that must be loaded prior to the current segment.

4
SegmentPrefix = prefix of the segment that must be loaded prior to the current segment.

5
home dir = home directory of the segment that must be loaded prior to the current segment.

6
version: patch = additional required identifying information of the segment that must be loaded prior to the current segment. Home directory of the segment that must be loaded prior to the current segment.

7
In some cases, it may be that a segment dependency can be fulfilled by one or more segments. This is indicated by bracketing ‘{‘ and ‘}’ such alternative segments and using the keyword $OR between the alternatives. In this example, the dependency can be satisfied by a having both of the segments identified before the $OR or by having the one segment following $OR loaded prior to the current segment.

Refer to paragraph 5.5.29 of the DII COE I&RTS for more information.

3.1.4.4.17 [SharedFile]

This section of the SegInfo file is used to indicate any UNIX shared libraries that must be installed for this segment. It includes a list of filenames for the UNIX shared libraries. Such libraries must be included in the segment’s /bin subdirectory, which is the DII-compliant location for shared files. VerifySeg issues an error message if a filename listed in this section does not exist under the segment’s /bin subdirectory. Shared files must use the segment prefix naming convention (SegPrefix_filename) to assure that the names are unique.

At installation time, the segment installer copies the shared file to the directory /h/COE/Shared, deletes the shared file from the segment’s /bin subdirectory, and then creates a symbolic link from /h/COE/Shared to the original location. This is done so that the search path for finding shared files does not need to include any entry other than /h/COE/Shared.

Segments which have a dependency upon the shared file must identify the segment which provides the shared file in the Requires section of the SegInfo file. Segments must identify the segment providing the shared library, not the actual filename. Special care is required to ensure that a segment which provides a shared library is not removed when there are segments still installed that require it. The COE install tool does not allow such segments to be removed.

Step 1:
Generate the SharedFile section of the SegInfo segment descriptor file by using the following format:

[SharedFile]

shared filename1

shared filename1

shared filename1
1
shared filename = name of the shared file provided by the segment; the filename must include the segment prefix (e.g., SegPrefix_filename).

Refer to paragraph 5.5.34 of the DII COE I&RTS for more information.
3.2 Developing SOFTWARE Segments

The SOFTWARE segment type is used for mission application software or COE application software that is custom developed.

3.2.1 Validate Segment Structure

View the segment directory structure and compare it to the structure shown in Figure 3-3. Not all directories are required. If the directories are required, verify that the names are correct and have the correct case sensitivity. The directories that are shaded in figure 3-3 are required for all SOFTWARE type segments.

Figure 3-3: UNIX SOFTWARE Segment Development Directory Structure

3.2.2 Load Segment Directories with Appropriate Files

Preparing a segment for submission to DISA requires, in addition to the Segment Descriptor files and the API files, the appropriate files for loading and executing the application. To be an installable segment by the DII COE Segment Installer tool and to comply with the I&RTS runtime requirements, the segment must have all of its files in the appropriate segment subdirectories. Perform the following steps to load the COE development environment with the required files (Note: SegmentPrefix is the prefix assigned to the segment by the developer).

Step 1:
Copy all executable files associated with the segment into /h/DEV/SegmentPrefix/bin. This segment directory may include subdirectories under /bin if desired. Executable files can be shell scripts and/or binary executables. If the /bin directory does contain shell scripts, be sure and include “#!/bin/csh -f”, “#!/bin/sh -f”, “#!/bin/ksh -f” on the first line of the file. This will ensure that the file gets interpreted correctly and that any defined environment variables will be correctly established. It is very common for an icon to be assigned to launch a script file which will establish execution time environment variables and launch executable files within the /bin directory. Linking icons to the script or executables will be covered later in this section of the document.

Step 2:
Copy all data files associated with the segment into /h/DEV/SegmentPrefix/data or the appropriate /h/DEV/SegmentPrefix/data subdirectory created earlier. Files defining an icon image file should be copied to the segment’s data/Icon directory. Application default files should be included in the segment’s data/app-defaults directory. Additional fonts required by the segment should be copied to the segment’s data/fonts directory. This segment directory may include additional subdirectories under data if desired.

3.2.3 Making the Segment Installable by the DII COE

3.3 Developing COTS Segments

The effort required to generate COTS type segments vary depending on the installation process used by the COTS product, the modifications made to the runtime environment, and the knowledge of the installation process employed by the COTS vendor. It is always desirable, but not usually practiced, to have the COTS vendor perform the segmentation effort. The procedures described here are designed for someone other than the COTS vendor to perform the segmentation effort. However, these procedures can just as easily be followed by a COTS vendor performing the required segmentation.

NOTE:
Always check the COE Home page to determine whether a segmented version of a COTS product is either already available (See “Search DII COE Segment Release Listing” on-line database) or is under development (See “On-line Segment Registration” on-line database). AVOID DUPLICATION OF EFFORT!

3.3.1 Install COTS Product

Install the COTS product being segmented using the COTS vendor provided installation instructions and media. If the COTS product is relocatable (operator has choice of where to load program) and all files are contained within the relocatable directory (no files put in operating system directories such as /usr/bin, /opt, etc…) choose the /h/DEV/SegPrefix/bin directory as the home directory during installation. If the COTS product is not relocatable (requires a fixed directory structure) then install the product as required.

3.3.2 Validate Segment Structure

View the segment directory structure and compare it to the structure shown in Figure 3-3. Not all directories are required. If the directories are required, verify that the names are correct and have the correct case sensitivity. The directories that are shaded in figure 3-3 are required for all COTS type segments. If the segment is relocatable, the /bin directory will be required.

Figure 3-4: UNIX COTS Segment Development Directory Structure

3.3.3 Load Segment Directories with Appropriate Files

COTS type segments differ from the other five DII COE segment types in that they do not have to comply with all of the directory structure requirements contained in Chapter 5 of the I&RTS. However, if a COTS product can comply with this directory structure, it should.

Preparing a segment for submission to DISA requires, in addition to the SegDescrip files and the API files, the appropriate files for loading and executing the application. To be an installable segment by the DII COE Segment Installer tool and to comply with the I&RTS runtime requirements, the segment must have all of its files in the appropriate segment subdirectories. Perform the following steps to load the COE development environment with the required files (Note: SegmentPrefix is the prefix assigned to the segment by the developer).

Step 1:
Copy all executable files associated with the segment into /h/DEV/SegmentPrefix/bin. This segment directory may include subdirectories under bin if desired. Executable files can be shell scripts and/or binary executables. If the bin directory does contain shell scripts, be sure and include “#!/bin/csh -f”, “#!/bin/sh -f”, “#!/bin/ksh -f” on the first line of the file. This will ensure that the file gets interpreted correctly and that any defined environment variables will be correctly established. It is very common for an icon to be assigned to launch a script file which will establish execution time environment variables and launch executable files within the bin directory. Linking icons to the script or executables will be covered later in this section of the document.

Step 2:
Copy all data files associated with the segment into /h/DEV/SegmentPrefix/data or the appropriate /h/DEV/SegmentPrefix/data subdirectory created earlier. Files defining an icon image file should be copied to the segment’s data/Icon directory. Application default files should be included in the segment’s data/app-defaults directory. Additional fonts required by the segment should be copied to the segment’s data/fonts directory. This segment directory may include additional subdirectories under /data if desired.

3.3.4 Enhancing the SegInfo Descriptor File for COTS

The FilesList section of the SegInfo file identifies all of the files and directories that a segment adds to the system. This FilesList section of the SegInfo segment descriptor file is required only for COTS segment types. FilesList may contain the following keywords:

$DIRS
a list of directories which this segment adds to the system. All files in the directory are assumed to belong to the segment.

$FILES
a list of files which this segment adds to the system.

$PATH
a shortcut for specifying a pathname. Succeeding $DIRS or $FILES are relative with respect to the path specified.

A keyword must precede any list so that it will be clear whether a directory or a file is intended. As an example, assume a segment to be installed creates the following four subdirectories

· /h/data/test/data1
· /h/data/test/data2
· /h/data/opt/data3
· /usr/opt/temp
and adds three files (f1, f2, f3) to the /etc subdirectory. Then the file FilesList should contain the following entries:

· $PATH:/h/data
· $DIRS

· test/data1
· test/data2
· opt/data3
· $DIRS

· /usr/opt/temp
· $PATH:/etc
· $FILES

· f1
· f2
· f3
The $DIRS keyword before /usr/opt/temp is not necessary, but is shown to illustrate that FilesList may contain multiple occurrences of the keywords.

For COTS products, this section must be used to list:

1. all files and directories the product adds that lie outside the segment’s assigned directory, and

2. any community file the COTS product modifies unless the modification is made by the COE installation tools.

For example, assume a COTS segment adds a port to /etc/services through the COEServices section of the SegInfo file. Further, assume that the vendor provides a program that directly modifies the /etc/group file as part of the installation process. Then FilesList section of the SegInfo file must list /etc/group but does not need to include /etc/services because the installation tool modifies it as a result of the entry in the COEServices section of the SegInfo file.

Step 1:
Add the FilesList section to the SegInfo file by using the following format:
[FilesList]

$DIRS1
directory 12
directory 22

•

•

directory n2
$FILES3
file 14
file 24

•

•

file n4
$PATH5
$FILES3
file 14
file 24

•

file n4
$PATH5
$DIRS1
directory 12
directory 22

•

directory n2
1
$DIRS = DII COE keyword identifying segment directories

2
directory = directories created by the segment. The $PATH variable can be set by including “$PATH:pathname” preceding the occurrence of the $DIRS. The $DIRS keyword must precede the list of directories.

3
$FILES = DII COE keyword identifying segment files.

4
file = files added by the segment outside of the segments directory. All files under a segments individual directories are assumed to belong to the segment. The $PATH variable can be set by including “$PATH:pathname” preceding the occurrence of the $FILES. The $FILES keyword must precede the list of filenames.

5
$PATH = DII COE keyword used as a shortcut for specifying a pathname. Entries under following $DIRS or $FILES are relative with respect to the path specified

Refer to paragraph 5.5.14 of the DII COE I&RTS for more detailed information.

3.3.5 Making the Segment Installable by the DII COE

The COTS software must be installed by the DII COE installer. A Postinstall file must be created to work with the DII COE installer to perform all of the necessary steps in installing the COTS software.

3.4 Developing DATABASE Segments

DATABASE segments are generally the most complex with respect to the time and effort required to complete the segmentation process. As mentioned in Section 2 of this document, the DATABASE segment type is not yet supported. Specifically, the VerifySeg tool does not recognize it as a valid type and thus it will not allow it to be used in the SegName file. The [Database] section of SegInfo as a segment will not be recognized as well. The work-around is to use the SOFTWARE segment type in the SegName file. Future releases of the DII COE are scheduled to have several tools available to help develop DATABASE segments. A Database Segmentation Tool (DBSEGT) is available with SHADE Engineering support on Solaris, HPUX, NT, and any other Java enabled platforms. The corresponding documents are available through the COE Home page. There are reusable data reference sets which can easily be incorporated in database segments. These are available via the DII COE Home page.

There are three types of segments related to databases. The first type, called a database server segment, is a segmented version of one of the DII COE supported DBMS COTS products. There must be at least one of these segment types to support segmented database applications.. These are DII COE segments and may be requested through the appropriate Service or Agency representatives. Proof of license is required to obtain these software segments.

The second type, called an application database segment, contains the objects (tables, indexes, triggers, etc.) of an application database. It may contain the data to fill this application database. This type of segment must create the tablespace(s) at install time within any database server segment with which the application database segment is to be used. If those DBMSs require different DDL statements for creation of the application database storage areas (e.g., Oracle’s tablespaces and objects), then there might be a separate application database segment for each.

The I&RTS defines three classes of application database segments based on the concept of sharing – universal, shared, and unique. A unique application database segment’s objects are specific to a particular application. Universal application database segment has objects that can potentially be used across the DII enterprise. Shared application database segment objects can be used by multiple applications.

The third type of segment is for data to be loaded into an application’s database under management control of a specific database server. Although any data to be loaded into the application’s database segment could be included with that segment, it may also be packaged as a separate data segment. One reason for this might be that the application database segment is not classified, but the data is. Another reason is that the data to be loaded varies by the application user group. For example, only subsets of the data might be needed by the users. See also section 2.5.

Refer to Chapter 4 of the I&RTS for the most comprehensive information about database concepts for the DII COE.

The remainder of this section provides some information on segmenting databases to run with an Oracle RDBMS.

All mission application database segments require installing a vendor based COTS segmented RDBMS product. ORACLE requires a COTS segmented RDBMS product and a database instance segment (DIIDB) to allocate system, rollback, and table spaces. SYBASE and INFORMIX require only the COTS segmented RDBMS product. In the case of SYBASE and INFORMIX, the RDBMS segment itself does the space allocations. For ORACLE database segments, a developer can create a new instance segment using the DIIDB instance segment as a template. This process allows reconfiguring system parameters based on requirement and system capability.

3.4.1 Installing the DIIDB Segment.

If Oracle is used, a database instance segment must also be installed. The current Oracle database instance segment is called DIIDB. This segment has predetermined database configuration parameters that control the size and other attributes of the database. A developer has the option of using this database instance segment as is or installing it on a development platform that has the DII COE environment and modifying it. Modifying the instance segment requires that the developer make a new segment using a different name. The DIIDB segment comes with a set of installation procedures which must be followed.

Once the DIIDB segment is installed, use the following procedures to verify that it installed correctly:

Step1:
Login as dba administrator/user. For Oracle Login as “oradba” .

Step 2:
Invoke the Application Manager window by selecting the application manager folder icon from the desktop.

Step 3:
Invoke the DII_APPS window by selecting the DII_APS icon.

Step 4:
Bring up DBProfile window by selecting the DBProfile icon.

Step 5:
Select the Oracle Admin icon. Oracle Server Manager, and Connect windows will pop up.

Step 6:
Enter Username and Password in the Oracle Server Manager. For the username choose oradba. Choose the “SYSDBA” value for the “Connect As” option field by pressing the option button and selecting “SYSDBA” value.

Step 7:
Press on “Connect” button. Default – Administration window will pop up.

Step 8:
From the File option menu of the above administration window, open New Worksheet. Worksheet 1 window will pop up. Use the top portion of this window to enter the commands and press the execute button to execute the above entered command. After execution, any corresponding message(s) will pop up in the bottom portion of the window,

Step 9:
Enter “Connect Internal” and press the Execute button. A message will pop up in the bottom window indicating that you are connected to the idle instance.

Step 10:
Clear the previously entered command(s) from the screen using backspace or delete key. Enter “Startup open DII” and press execute button where “DII” is the database instance.

Step 11:
Enter “Select * from V$DATABASE;”. You should see a message indicating that one row has been selected.

Step 12:
Enter “shutdown immediate” and press the execute button. This will shutdown the Oracle database.

Step 13:
Select file option from the Worksheet 1 window and choose quit option. Oracle Server Manager prompt window will be displayed. Select the quit option button. This will close the server manager session (administration window).

Step 14:
Close all open windows

Step 16:
Click on the right most button of the mouse from the gray area of the screen and select the Logout option.

Step 17:
From the Logout Confirmation window press Continue logout button.

3.4.2 Build new Database Instance Segment

This process involves building a new instance segment using the provided RDBMS physical device area, and DIIDB control, descriptor files. A detailed procedure for a simple segment is described belolw.

Step 1:
Login to DII COE as sysadmin.

Step 2:
Click on application manager folder icon from the desktop. This will invoke the Application Manager window.

Step 3:
Double click on DII_APS icon which will invoke the DII_APPS window.

Step 4:
Double click on SA_Default icon. This will bring up the Application Manager SA_Default window.

Step 5:
Double click on xterm icon. Xterm window pops up.

Generate the required files (control files, sql, and other script files):

Step 1:
Login as sysadmin from the Xterm window.

Step 2:
Generate the Database new instance segment as a software segment using sections 3.4 through 3.9 of the How To Segment Guide (Version 5.2). A basic layout file structure is given below. Also in the next few steps, additional information is included to extract files from the DII directory.

Step 3:
Copy the above required files from the DIIDB segment (h/COTS/DIIDB), and /ora01/app/oracle/admin/DII area to the development directory (/h/DEV/MYSEG) where “MYSEGSB” is the new segment directory name as well as its prefix. The corresponding database is “MYSEG”.

NOTE:
For filenames, the DIIDB segment uses *DII* convention and MYSEGDB uses *MYSEG* convention. Hence in some cases renaming files is required.

Step 4:
Modify the above descriptor, control, and sql files as required (For full reference, a copy of the updated files are attached).

Step 5:
Modify the .cshrc,oradba file in /h/USERS/local/oradba/Scripts directory to include the new site id and db home as indicated below.

setenv ORACLE_SID MYSEG

setenv DB_HOME/h/MYSEGDB

Step 6:
After the above file setup process is complete, generate the new database instance using the segment type as “SOFTWARE”.

Step 7:
Install the above generated segment.

Step 8:
Test the above new instance segment (MYSEGDB) using the procedure indicated earlier as in item 3) of database segmentation procedure. The only required changes are user interface input category – Replace “DII” with new instance segment name “MYSEG” and “DIIDB” with “MYSEGDB”.

3.4.3 Enhance Segment Structure

Two additional segment directories are required for DATABASE type segments; include and DBS_files. Create these directories with the following commands:

>> cd /h/DEV/SegmentPrefix
>> mkdir DBS_files Install

View the segment directory structure and compare it to the structure shown in Figure 3-5. Not all directories are required. If the directories are required, verify that the names are correct and have the correct case sensitivity. The directories that are shaded in figure 3-5 are required for all DATABASE type segments.

Figure 3-5: UNIX DATABASE Segment Development Directory Structure

3.4.4 Augment Segment Directories

Copy all database installation scripts into the segment “install” directory.

3.4.4.1 Data Files

Copy any data files associated with initially populating the database into the segment data directory.

3.4.5 Modify SegInfo Segment Descriptor File

This section describes the procedures for making modifications to the SeInfo segment descriptor file to accommodate the DATABASE segment type.

3.4.5.1 Hardware

The Hardware section of SegInfo is required for all segment types including the DATABASE type. It specifies the computing resources required by the segment. For many database segments, there is a required disk partition configuration.

Step 1:
Generate the Hardware section of SegInfo using the following format:

Format

[Hardware]

$CPU1:platform2

$MEMORY3:size4

$DISK5:size6[:reserve7] or $PARTITION8:diskname9:size10[:reserve7]

•

•

•

$PARTITION8:diskname9:size10[:reserve7]

$OPSYS11:operating system12

$TEMPSPACE13:size14
8
$PARTITION = DII COE keyword used to define segment partitions.

9
diskname = explicit partition name (e.g., /home2) or an environment variable name of the form DISK1, DISK2, ...DISK99. The installation software will set the environment variables DISK1, DISK2, etc.... to the absolute pathname where space has been allocated. These environment variables are defined for PreInstall and PostInstall but not for DEINSTALL. $Partition keywords are assumed to be in sequential order so that environment variable DISK1 will refer to the first keyword encountered, DISK2 to the second, etc..

10
size (PARTITION) = size of the segment in kilobytes on a particular disk partition. Installation software does not allow a segment to be split across multiple disk partitions. However, the segment may do so in the PostInstall script; the use of multiple disk partitions is not recommended.

Refer to paragraph 5.5.15 of the DII COE I&RTS for more information on the Hardware section.

3.4.5.2 Data

The Data section of the SegInfo segment descriptor file is used to describe where data files are to be logically loaded and their scope (global, local, or segment). Only one of the three scopes may be specified; that is, a data segment has one and only one scope. The data identified in this section of the SegInfo file will be installed underneath the affected segment’s /data subdirectory.

Step 1:
Generate the Data section of the SegInfo segment descriptor file using the following format:

[Data]

$SEGMENT1:segname2:segmentprefix3: home dir4

OR

$LOCAL5:segname2:segmentprefix3: home dir4

OR

$GLOBAL6:segname2:segmentprefix3: home dir4
1
$SEGMENT = DII COE keyword used when the data segment is local to the workstation and is managed and accessed by a single software segment.

2
segname = string of up to 32 alphanumeric characters (spaces permitted) of the affected segment. Must be the same as used in the SegName file for $SEGMENT.

3
segment prefix = string of up to 6 alphanumeric characters of the affected segment (no embedded spaces). Should be consistent with configuration management and segment registration process. Cannot use reserved segment prefixes identified in paragraph 5.3 of the DII COE I&RTS. Must be the same as used in the SegName file for $SEGMENT.

4
home dir = /h/SegmentPrefix for the affected segment.

5
$LOCAL = DII COE keyword used when the data segment is limited to a local workstation but can be accessed by all users and applications local to that workstation.

6
$GLOBAL = DII COE keyword used when the data segment can be accessed by every workstation, every application and every operator having LAN access.

Refer to paragraph 5.5.8 of the DII COE I&RTS for more detailed information.

3.4.5.3 Database

The Database section of the SegInfo file is used to identify information about database usage by applications or of the database itself. Such information includes, for example, object dependencies that are within the database and therefore cannot be resolved without the use of the DBMS. There are five keywords used within this section: $REFERENCES, $MODIFIES, $ROLES, $SCOPE, and $ACCESSES. The first four keywords are used by database segments, the $ACCESSES keyword is used by software segments accessing a database.

The $SCOPE keyword specifies the scope of the database objects. Legal values for scope are UNIQUE, SHARED, and UNIVERSAL.

Unique database segments are those which are typically used by only one application or are under the configuration control of the segment sponsor. Unique data may be shared between applications, but the usage is restricted to a single mission domain

Shared database segments support the information requirements of multiple applications or across multiple database segments. Shared database segments are typically mission-or-functionally-oriented, and are generally specific to a limited number of mission domains. Because they affect multiple applications that will likely span services or functional areas, Shared database segments must be under joint configuration control

Universal database segments represent the other extreme of “shareability.” Universal database segments reflect a need for identical data in diverse areas, are used by many applications, and span multiple mission domains. Universal database segments usually have no dependency on any other segment (except the DBMS segment) and frequently consist of a small number of tables and elements. A common type is reference or lookup tables. An example is a database of country-code abbreviations. A larger example would be the equivalent of “Jane’s Data” with data specifications on weapons, aircraft, ships, and communications systems. Universal database segments are under stricter configuration control and require DISA and DOD Data Administration coordination.

$REFERENCES

The $REFERENCES keyword is followed by a list of the individual application database objects upon which this application database segment depends but are external to this application database segment. (NOTE: the Requires segment section of the SegInfo file must be used to state a dependency upon the external application database segments whose objects are listed under this application database’s $REFERENCES keyword . Version compatibility will be checked based upon the information contained in the Requires section; thus, it is not required to be specified with the $REFERENCES keyowrd.

For example, assume that the GSORTS application database segment references the COUNTRY_CODE table in the S&M application database segment and the PORTS table in the NID application database segment. The DBO accounts for S&M and NID application database segments respectively are TABLE_MASTER and NID. The appropriate descriptor is

$REFERENCES
COUNTRY_CODE:TABLE_MASTER
PORTS:NID

$MODIFIES

The $MODIFIES keyword is followed by a list of external application database objects that this application database segment modifies by, for example, adding triggers,or including them in procedures or functions. All external application database segments whose objects are listed under this keyword must also, as with the items listed under the $REFERENCES keywork, appear under the Requires section of the SegInfo file. The object name and schema follow the same rules as the $REFERENCES keyword. Modification type is used to stipulate what has been done. Its legal values are TRIGGER for database triggers or PROCEDURE for database functions, procedures, or packages. Modification name is the name of the trigger or procedure that is attached to the object. An example follows defining a trigger named GSORTS_NID_COPY that is attached to the NID database’s PORTS table.

$MODIFIES
PORTS:NID:TRIGGER:GSORTS_NID_COPY

$ROLES
The $ROLES keyword is followed by a list of the database roles created by the database segment. An example that defines two roles follows.

$ROLES
EWIR_RO
EWIR_DATA1_RW

It is recommended that comments be placed in the segment descriptor to describe what these roles are for and how they are intended to be used. This is a convenient place to document such important information.

$ACCESSES
The $ACCESSES keyword is used in this database section of the SegInfo file if the segment is a software segment rather than a database segment. It associates individual applications to supporting database roles. The application name is the name of the executable within the segment. Role name is the name of the database role used by the application. Segment name is the name of the database segment that owns that role. That segment will be searched by the installer tool, if necessary, to obtain the DBO account name. An example follows associating the EWIR_WIDE application to the EWIR_RO role.

$ACCESSES
EWIR_WIDE.FMX:EWIR_RO:EWIRDB

Note:
Do not confuse the Database segment descriptor with the database segment type. The segment descriptor, described in this subsection, describes specialized processing for the COE to perform on a segment which is of segment type ‘application database.’

[Database]

$SCOPE1:scope2: SegmentPrefix2:home dir3 [:version4{:patch5}]

$REFERENCES3
object name4: schema5

•

•

object name4: schema5
$MODIFIES6
object name4: schema5:modification type7: modification name8

•

•

object name4: schema5: modification type7: modification name8
$ROLES9
role name10

•

•

role name10
$ACCESSES11
application name12: role name10:segment name13

•

•

application name12: role name13: application database segment name14
1
$SCOPE Keyword used to identify the scope of the data contained in the application database segment.

2
scope Must be either UNIQUE, SHARED, or UNIVERSAL

3
$REFERENCES keyword used to identify other application database objects upon which this application database segment is dependent. Multiple entries can follow this keyword; each entry on a separate line.

4
object name = the name of the object in the external application database segment.

5
schema = the database owner accounts for the referenced external application database objects.

6
$MODIFIES keyword used to identify other application database objects which are modified by this application database segment.

7
modification type = used to indicate what type of modification has been done to the external application database segment. Values for this parameter are: TRIGGER for the addition of database triggers; PROCEDURE for inclusion of database functions, procedures or packages.

8
modification name = name of the TRIGGER or PROCEDURE attached to the external application database.

9
$ROLES keyword used to identify database roles created by this application database segment.

10role name = the name of the created role.

11
$ACCESSES keyword used to identify a software segment with associated application databases.

12
application name = name of the executable within the software segment.

13role name = the name of the database role used by the application.

14
application database segment name = name of the application database segment that own the role identified with role name13.

Refer to paragraph 5.5.9 of the DII COE I&RTS for more information.

3.4.5.4 Requires

The Requires section of the SegInfo segment descriptor file is used to identify segment dependencies. DATABASE type segments must include the COTS DBMS as a required application.

Step 1:
Generate the Requires section of the SegInfo segment descriptor file by using the following format:

[Requires]

[$HOME_DIR1:pathname2]

segment name 13: SegmentPrefix4:home dir5:[version{:patch}]6

segment name 23: SegmentPrefix4:home dir5:[version{:patch}]6

•

segment name n3: SegmentPrefix4:home dir5:[version{:patch}]6
{ 7

segment name 13: SegmentPrefix4:home dir5:[version{:patch}]6

segment name 23: SegmentPrefix4:home dir5:[version{:patch}]6

$OR7

segment name n3: SegmentPrefix4:home dir5:[version{:patch}]6
} 7
1
$HOME_DIR = DII COE keyword to assign pathname. The optional $HOME_DIR keyword is used in situations where a segment must be loaded onto the disk in a particular place. This technique should be avoided.

2
pathname = directory path of the segment home directory. See comment in footnote 1 above.

3
segment name = name of the segment that must be loaded prior to the current segment.

4
SegmentPrefix = prefix of the segment that must be loaded prior to the current segment.

5
home dir = home directory of the segment that must be loaded prior to the current segment.

6
version: patch = additional required identifying information of the segment that must be loaded prior to the current segment. home directory of the segment that must be loaded prior to the current segment.

7
In some cases, it may be that a segment dependency can be fulfilled by one or more segments. This is indicated by bracketing ‘{‘ and ‘}’ such alternative segments and using the keyword $OR between the alternatives. In this example, the dependency can be satisfied by a having both of the segments identified before the $OR or by having the one segment following $OR loaded prior to the current segment.

Refer to paragraph 5.5.29 of the DII COE I&RTS for more information.

3.4.6 Modifying the DEINSTALL and PostInstall Segment Descriptor Files

This section describes the procedures for modifying the DEINSTALL and PostInstall segment descriptor files for all DATABASE segment types.

3.4.6.1 DEINSTALL

The DEINSTALL descriptor file is an executable, either a script or a compiled program, that is invoked by the DII COE Segment Installer tool when the operator has elected to remove a segment. This may occur by explicitly selecting a segment to remove or by electing to install a new version of a currently segment. DEINSTALL should perform actions such as shutting down segment-owned background processes prior to segment removal. Operations performed in preparation for a segment update should normally be done in PreInstall, while DEINSTALL is used when the segment is to be “permanently” removed from the system.

If this file does not exist, the segment is assumed to be permanent and cannot be removed except when installing a new version. If a new version is installed and this file does not exist, the installation software will use the information in the descriptor directory to undo changes made by the previous installation of the segment and then simply delete the directory.

For security reasons, the DEINSTALL script is preferably not run with root-level privileges. If it must be run with such privileges, it must be so identified in the Direct section of the SegInfo file with the $ROOT keyword; the $KEY keyword must also be specified in the Direct descriptor to acquire root-level privileges.

The DEINSTALL segment descriptor file is optional for all segment types.

Step 1:
Generate the DEINSTALL segment descriptor file and include steps to invoke the scripts and/or executables required to remove all elements (files, directories) associated with the segment that is being removed from the system.

Refer to paragraph 5.5.11 of the DII COE I&RTS for more information.

3.4.6.2 PostInstall

The PostInstall segment descriptor file contains operations specific to installing the segment that must be performed after the segment software has been copied to the disk and installed by the COE software. The file can be a shell script file or an executable file. The PostInstall segment descriptor file is required for Patch type segments and optional for all other segment types.

It is preferable that the PostInstall script not run with root-level privileges. If it must be run with such privileges, then $ROOT keyword must be used in the Direct section of the SegInfo file. . Note that the $KEY keyword must also be specified in the Direct section before root-level privileges can be used.

Step 1:
Generate the PostInstall segment descriptor file and include steps to invoke scripts and/or executables associated with the segment. Do not duplicate any operations performed by the COE installation software. Prompt the user as required.

Refer to paragraph 5.5.22 of the DII COE I&RTS for more detailed information.

3.5 Developing ACCOUNT GROUP Segments

Account group segments require the addition of the [AcctGroup] section of the SegInfo file.

The entry of the file is used as a template for groups within the UNIX /etc/group file.

Step 1:
Add the AcctGroup section to the SegInfo segment descriptor file using the following format:
Format
[AcctGroup]

$group name1:group ID2:shell3:profile flag4:home dir5:default profile name6
$CLASSIF7:classification8
Example
[AcctGroup]

C4I Operator:35:/bin/csh:1:/h/Acctgrps/C4I:C4I Default

$CLASSIF:UNCLASS

1
group name = Alphanumeric string up to 15 characters used to identify this account group. The account group name must be unique (i.e., no other account group may have the same name). It may include embedded blanks.

2
group id = UNIX group ID to be inserted into the password file for accounts created from this group.

3
shell = UNIX shell to execute when logging in (e.g., /bin/csh, /bin/sh)

4
profile flag = 0 if no profiles are allowed, otherwise 1.

5
home dir = Home directory for the account group (e.g., /h/AcctGrps/SecAdm). The path name may contain up to 256 characters.

6
default profile name = Alphanumeric string up to 15 characters identifying the account group’s default profile. This name is ignored unless the profile flag is non-zero.

7
$CLASSIF = Keyword to specify classification level of the profile.

8
Classification level = Classification level can be UNCLASS, CONFIDENTIAL, SECRET, or TOP SECRET. The classification level for a profile will default to TOP SECRET unless the segment has defined it otherwise.

Refer to paragraph 5.5.1 of the DII COE I&RTS for more detailed information.
3.6 Developing DATA Segments

The Data section of the SegInfo segment descriptor file is required by DATA segments to describe where data files are to be logically loaded and their scope (global, local, or segment). Only one of the three scopes may be specified; that is, a data segment has one and only one scope. The data identified in this section of the SegInfo file will be installed underneath the affected segment’s ../data subdirectory.

Step 1:
Add the Data section to the SegInfo segment descriptor file using the following format:

[Data]

$SEGMENT1:segname2:segmentprefix3: home dir4

OR

$LOCAL5:segname2:segmentprefix3: home dir4

OR

$GLOBAL6:segname2:segmentprefix3: home dir4
1
$SEGMENT = DII COE Keyword used when the data segment is local to the workstation and is managed and accessed by a single software segment.

2
segname = string of up to 32 alphanumeric characters (spaces permitted) of the affected segment. Must be the same as used in the SegName file for $SEGMENT.

3
segment prefix = string of up to 6 alphanumeric characters of the affected segment (no embedded spaces). Should be consistent with configuration management and segment registration process. Cannot use reserved segment prefixes identified in paragraph 5.3 of the DII COE I&RTS. Must be the same as used in the SegName file for $SEGMENT.

4
home dir = /h/SegmentPrefix for the affected segment.

5
$LOCAL = DII COE keyword used when the data segment is limited to a local workstation but can be accessed by all users and applications local to that workstation.

6
$GLOBAL = DII COE keyword used when the data segment can be accessed by every workstation, every application and every operator having LAN access.

Refer to paragraph 5.5.8 of the DII COE I&RTS for more detailed information.

3.7 Developing PATCH Segments

Refer to paragraph 5.4.6 of the DII COE I&RTS document for specific information about patch segments.

3.8 Verifying the Segment

The tool VerifySeg (provided by the DII COE Developers Toolkit) must be run against all segments to validate that all associated segment descriptor files are complete and correct. VerifySeg is used to validate that a segment conforms to the rules for defining a segment. It uses information in the /SegDescrip subdirectory and must be run whenever the segment is modified (associated segment descriptor files, data files, executables, etc). If the segment is an aggregate segment, VerifySeg must be run on each segment in the aggregate. VerifySeg will also be run by the COE Integrators to ensure all submitted segments conform to the I&RTS.

· Check to ensure that executables are prefaced with the segment prefix where required.

· Check to ensure that all defined environment variables use the segment prefix.

· Check to ensure that all pathnames are defined relative to the home environment variable, segprefix_HOME.

· Check to ensure that all required environment variables (USER_HOME, USER_DATA, DATA_DIR, etc.) are defined by account group segments.

· Check to ensure that all required environment variables are defined by the COE parent component segment.

· Check aggregate segments for internal consistency (e.g., all components are hardware compatible).

· Check and warn if ‘mv’ is used in a PostInstall, PreInstall, or DEINSTALL script since this may be an illegal attempt to move files across disk partitions.

NOTE:
The VerifySegDB, VerifySecurity, and ChkCompliance tools documented in the DII COE I&RTS are not supported at this time.

VerifySegDB is used to validate that the database for a database segment conforms to the rules for defining a segment’s database. It executes within the DBMS and is a helper function for VerifySeg. It cannot be executed independently of VerifySeg, but is called automatically from VerifySeg.

The VerifySecurity tool is used to perform security checks against a segment (similar to the operation of VerifySeg),. A single security policy cannot be stated for all COE-based systems, so this tool is limited to identifying potential security risks that are common across all systems (e.g., files that are world readable/writeable, use of remote commands, improper .rhosts files, etc.). VerifySecurity checks security-related issues to the extent possible. Neither it nor any other tool is fully comprehensive, nor does it obviate the need for a disciplined security policy and security enforcement procedures. This tool can also be used to perform security checks against an installed COE (similar to VerifyCOE), or against an installed system.

The ChkCompliance tool examines a segment to determine its Category 1 compliance level. Some requirements cannot be checked automatically (e.g., using only POSIX calls, expected location of X/Motif libraries), so the tool reports the maximum possible level of compliance based on the criteria that can be checked automatically. ChkDBCompliance examines a database segment’s database to determine its level of compliance. It executes within the DBMS to complement ChkCompliance. It cannot be executed independently because it is a helper function and is called automatically from ChkCompliance. The results of running these compliance tests is mainly for information; the results will not cause the segment to be considered to be incapable of being installed.

Execution of the VerifySeg tool automatically generates the Validated descriptor file. The COE requires strict adherence to integration and test procedures to ensure that a fielded system will operate correctly. To facilitate integration and testing, the generated Validated file is used to confirm that a segment has been tested for DII compliance. Subsequent tools in the COE development, integration, and installation process use this file to determine whether a segment has been altered, thus indicating that the segment needs to be revalidated. The Validated file indicates the version of VerifySeg tool used, the date and time of the successful use of the VerifySeg, the username of the one invoking VerifySeg, indication of the number of errors and warnings, and a checksum value.

Execute the VerifySeg tool to automatically generate the Validated descriptor file which includes the version of VerifySeg, the date and time of validation, who performed that validation, a count of errors and warnings, and a checksum using the following steps:

Step 1:
Invoke the COE CalcSpace tool to update the kilobytes value associated with the $DISK keyword in the Hardware section of SegInfo segment descriptor file using the following command::
>> CalcSpace -p /h/DEV segmentdirectoryname
where segmentdirectoryname is the segment home directory; the SegPrefix is typically used as the name of this directory.

Step 2:
Invoke the COE TimeStamp tool to update the VERSION descriptor file using the following command::

>> TimeStamp -p /h/DEV segmentdirectoryname
where segmentdirectoryname is the segment home directory; the SegPrefix is typically used as the name of this directory.

Step 3:
Type the following command sequence from the UNIX prompt:
> VerifySeg -p /h/DEV segmentdirectoryname
where segmentdirectoryname is the segment home directory; the SegPrefix is typically used as the name of this directory.

Step 4:
If errors or warnings are returned from the VerifySeg tool, changes generally will be required to the segment descriptor files and/or other files within the segment directory to resolve those errors and warnings. There must be zero errors for the segment to be installable.

.

Step 5:
If changes are made to the segment, rerun VerifySeg until all the errors = 0. Warnings are acceptable to continuing on with the segmentation effort but will impact the degree of COE runtime compliance that can be achieved by the segment.

NOTE:
DO NOT edit a Segment Descriptor file without re-running VerifySeg. TimeStamp, and CalcSpace (if space is changed as a result of the editing). Should also be rerun.

Step 6:
Type the following command sequence from the UNIX prompt:
> VerifySecurity -p /h/DEV segmentdirectoryname

where segmentdirectoryname is the segment home directory; the SegPrefix is typically used as the name of this directory.

Step 7:
 If errors or warnings are returned by the VerifySecurity tool, changes may be required to the segment files to resolve those errors and warnings

.

Step 8:
If changes are made repeat steps 1, 2 and 3.

Step 9:
Type the following command sequence from the UNIX prompt:
> ChkCompliance -p /h/DEV segmentdirectoryname

where segmentdirectoryname is the segment home directory; the SegPrefix is typically used as the name of this directory.

Step 10:
 If errors or warnings are returned by the ChkCompliance tool, changes may be required to the segment files to resolve those errors and warnings

.

Step 11:
If changes are made repeat steps 1, 2 and 3. VerifySecurity may also need to be rerun.

Step 12:
Review the Validated file on the screen using “moreValidated” to determine the appropriateness of the information contained in the file.

Refer to paragraph C-3.22 of the DII COE I&RTS for more information.

3.9 Testing that the Segment is Installable

The DII tools TestInstall and TestRemove can be used to determine if the segment is installable before the install media is made. TestInstall is used to temporarily install a segment that already resides on disk. It must be run when there are no other COE processes running. The reason for this restriction is that the tool may modify COE files already in use with unpredictable results. VerifySeg should have been run before TestInstall to make sure that the segment is valid. TestInstall performs the same operations as COEInstaller except that it does not need to read the segment from recorded media (e.g., it is already on disk), and the segment may be in any arbitrary location. TestInstall will establish the required symbolic link under /h to preserve the COE runtime directory structure.

Step 1:
Run the TestInstall command (See Section C2.11 of the I&RTS for directions on running the tool) using the following command:

> TestInstall -p /h/DEV segmentdirectoryname

where segmentdirectoryname is the segment home directory; the SegPrefix is typically used as the name of this directory.

Step 2:
Observe the following response:

**

TestInstall - Version x.x.x.x

**

The following options have been selected

**

Print warning messages

**

Segments to be TestInstalled:

**

Segment: {Segment Directory Name}
Path: c:\h\DII_DEV

********************* WARNING ***************************

TestInstall may modify COE files already in use.

This may cause unpredictable results if COE processes are already running.

Make sure no other COE processes are running before using TestInstall.

Do you want to continue with the TestInstall? (y/n):

Step 3:
Select ‘y’ followed by a carriage return.

Step 4:
Observe some or all of the following response:

Processing {Segment Directory Name}

The segment /h/DEV/{Segment Directory Name} already uses the DII COE

standard. ConvertSeg is not required.

Successfully ran preprocessor on Segment {Segment Directory Name}

No PreInstall script for Segment {Segment Directory Name}

{WARNING Messages, if any}

No PostInstall script for Segment {Segment Directory Name}

{WARNING Messages, if any}

Successful installation of {Segment Directory Name}

Step 5:
Make any necessary corrections to the segment descriptor files based on returned error messages and rerun steps 1-4 as necessary. Rerun VerifySeg and TestInstall until the TestInstall program runs without issuing error messages. Each time TestInstall is rerun, select ‘y’ when asked to run TestRemove first.

NOTE:
TestRemove may not remove of COE directory entries generated by the TestInstall process. If warnings are issued from subsequent TestInstall runs concerning the existence of files, the identified files may need to be removed manually following a failed TestInstall run.

Step 6:
Run TestRemove using the following command (See Section C2.11 of the I&RTS for directions on running the tool):

>> TestRemove -p \h\DEV segmentdirectoryname

Step 7:
Observe the following response:

********************* WARNING ***************************

TestRemove may modify COE files already in use.

This may cause unpredictable results if COE processes are already running.

Make sure no other COE processes are running before using TestRemove.

Do you want to continue with the TestRemove? (y/n):

Step 8:
Select ‘y’ followed by a carriage return.

Step 9:
Observe some or all of the following response:

SETTING
c:\h\DII_DEV\SegDirectoryName FOR INSTALL_DIR

{WARNING Messages, if any}

Successful Removal of {Segment Directory Name}

Refer to paragraph C-3.16 and C-3.17 of the DII COE I&RTS for more information.

3.10 Making Segment Install Media

This section pertains to the creation of an installation tape of the segment. (See paragraph C.2.6 of the I&RTS for additional information on using MakeInstall.) The segment tape can be created using the following steps:

Step 1:
Use the following command to start the make install tape process:
>> MakeInstall -p /h/DEV segmentnamedirectory

where segmentdirectoryname is the segment home directory; the SegPrefix is typically used as the name of this directory.

Step 2:
Observe the following response:
Write to Disk

Write compressed to disk

list of devices available

Enter device to use (1, 2, etc) or type ‘q’ to quit.

NOTE:
A no-rewind device must be specified in order for the media to be created correctly.

Step 3:
Type in the number of the device to be used:
>> device number
Step 4:
Observe “Enter name of the output file or type ‘q’ to quit.” on the display.
Step 5:
Type in the name of the segment:
>> segmentname
Step 6:
Observe the following on the display:

Processing Segment: /h/SegmentPrefix ...

Enter your name for the Tape Header:

Step 7:
Type in the name of the segment:

>> segmentname
Step 8:
Observe “Enter a serial number for the Tape Header:”
Step 9:
Type in the following:

>> 1

Step 10:
Observe the following on the display:
Enter any desired comment to put in the Tape Header (up to 255 characters) .

Step 11:
Type in the following:

>> Test load of Segment segmentname
Step 12:
Observe display showing the Tape Index, Attributes, Type, Hardware, Class, Home Directory and Segment Name.

Step 13:
Observe display showing 1 segment to write to tape.

Step 14:
Observe display showing space required in megabytes.

Step 15:
Observe display showing message: DII install tape completed.

3.11 Performing System Test of Installed Segments

Step 1:
Logon on to a UNIX platform, with the DII COE installed, and logon as the system administrator.
Step 2:
Select the COEInstaller command from the Software pull-down menu on the display to Launch the COE Installer.

Step 3:
Insert the first tape of the segmented application in the tape drive.

Step 4:
Select the appropriate source drive from the COEInstaller window.

Step 5:
Select the Read Table of Contents button from the COEInstaller window and wait for the contents of the diskette to show up in the COEInstaller window.

Step 6:
Select the segmented application and verify that it shows as reverse video.

Step 7:
Select the Release Notes button and verify that the release notes are displayed correctly.

Step 8:
Select the Conflicts button and verify that conflicts identified during the segmentation process, if any, are displayed by COE Installer.

Step 9:
Select the Requires button and verify that dependent segments identified during the segmentation process are displayed by the COE Installer.

Step 10:
Select the Install button and respond to any prompts by the segmented application’s installation scripts.

Step 11:
Verify that the COE Installer responds with a segment was successfully installed message and shows up in the “installed segments” area of the COEInstaller.

Step 12:
If the installation failed, review the installation log via the pulldown menu and take appropriate action to resolve the problem. This may involve modification of the segmentation descriptor files, rerunning VerifySeg, TestInstall, TestRemove and MakeInstall to create a new version of the segment.

Step 13:
If the COEInstaller fails to install the segment and there are no messages in the installation log, run the Installation tool from the command line with the “-debug” option to force retrieval of COEInstaller error messages. It is suggested that the output from the debug command be directed to a file for later use. Use the following command.

> /h/COE/COEInstaller -debug devicename >mydebug.log

Step 14:
Review the debug log for clues on why the installation fails. If changes are made to the Segment files based on entries in the debug log, repeat steps beginning with those contained in section 3.6.

Refer to paragraph C-2.17 of the DII COE I&RTS for more information.

4 Segmentation for the Windows NT Environment

4.1 Common Segmentation Procedures for Windows NT

4.1.1 Installing the DII COE Software

The developer must install the DII COE Kernel, DII COE developers ToolKit and required COE segments for the Windows NT environment. The installation of these products assumes that a standard Windows NT installation has been performed and that the appropriate Windows NT Service Pack (as documented in the DII COE Consolidated Installation Guide for Windows NT 4.0) has been installed and the operating system is using the NTFS (not FAT) file system on the drive where the DII COE software will reside.

4.1.1.1 Installing the DII COE Windows NT Kernel

To install the kernel place the first of two kernel diskettes in the A: drive and run the install file from the startup button. The Installation process will continue and a message will be displayed to insert the kernel second diskette. These procedures are self instructive. For additional information, refer to the DII COE Kernel Installation Guide Windows NT. This document can be obtained through the configuration management link off of the DII COE Home Page (URL: http://spider.osfl.disa.mil.).

After installing Kernel, load NT Developer’s Toolkit. Once the Developers Toolkit is installed, you are ready to load the other provided application segments for example IRC Chat client, Netscape etc.. Loading an application segment(s) is described in section 4.1.2.

NOTE:
There should be at least 50 megabytes of available disk space identified on the platforms hard disk or a partition of a hard disk. This disk space must be formatted with the NTFS file system. The COEInstaller defaults to loading the DII COE Kernel onto the C: drive. This can be changed via the COEInstaller.

NOTE:
The version of the DII COE Kernel to be installed must be compatible with the specific version of the operating system of the platform on which the DII COE kernel will be installed.

4.1.1.2 Installing Infrastructure and Common Support Application Segments

If the segment being developed has dependencies on DII COE infrastructure and/or common support application segments, these dependent segments will have to be loaded in the DII COE runtime environment prior to testing the installation of the segment under development. These segments should have been requested at the same time as the request for the DII COE Kernel software was made. (Refer to section 2.2 of this document.) To install the additional DII COE segments, perform the following steps:

Step 1:
Login to Windows NT as administrator.

Step 2:
Insert the first (if more than one) application segment diskette into the A: drive.

Step 3:
Click on the start button. Point to the DII INSTALLER icon through the Programs and System Administrator menu item.

Step 4:
Select the DII INSTALLER icon.

Step 5:
When the Segment Installer window comes up, verify that source drive is selected for the source. If it is not, select a corresponding device. For selection, choose the source icon from the toolbar which is displayed on the top portion of the Segment Installer window. If you are a first time user and not familiar with the corresponding icon buttons, place the mouse pointer on the icon to display its name. In selecting a source, there is a alternative procedure which can be done by invoking the “File” menu option from the Segment Installer window and then choosing the “Select Source” option. This will bring up the “Drive Select” dialog window to enter/select a source name.

Step 6:
Select the READ TOC icon and wait for the Segment Installer window to display the available segments on the tape.

Step 7:
Select the segment to be installed by clicking the box to the left of a segment you want to install in the name file of available segments window. Before you go to step 8, make sure to check for conflicts and requires conditions and release notes categories for this segment. This can be checked/verified by selecting the corresponding options from the “Available Segments” menu option from the Segment Installer window.

Step 8:
Select the target drive either using the menu option or by selecting the corrosponding icon button.

Step 9:
Select the install icon.

Step 10:
Wait for the segment to complete the installation process. After the installation is done, verify the log process to see whether this segment was installed succussfully. This can be done by selecting the “File” menu option and choosing “Installation Log” from the Segment Installer window.

NOTE:
If more than one segment is being installed while the COE Installer is running, the Installation will accumulate the messages indicated success or failure for multiple segments. Be sure and look for the messages that correspond with the segment that was just installed. The installation log is cleaned out each time the COE Installer is initialized.

Step 10:
Install other segments on the same media (if required) by repeating steps 6 - 8.

Step 11:
Install other segments on different media (if required) by repeating steps 5 - 9.

Step 12:
Exit the Segment Installer by selecting the close window “X” button which is located on the top right hand corner of the COEInstaller window or selecting Exit option from the File pull-down menu. This exit action will prompt with a dialog box for further confirmation. Click on the yes button to exit or no to return to the COEInstaller window.

4.1.1.3 Installing the DII COE Windows NT Developer’s Toolkit

The tools required to support development and runtime capabilities make-up the DII COE Developer’s Toolkit. Specifically, the DII COE Toolkit for COE Windows NT release 3.2 contains the following:

· COE Development Tools. These tools are to be used by the developer for creating and validating segmentation descriptor files and for creating, testing and installing the segment. These tools are best run from the DOS prompt. The tools, contained in the DII_DEV\bin folder are:

· Executable File: CalcSpace.exe

· Executable File: CanInstall.exe

· Executable File: ConvertSeg.exe

· Executable File: MakeInstall.exe

· Executable File: TestInstall.exe

· Executable File: TestRemove.exe

· Executable File: TimeStamp.exe

· Executable File: VerifySeg.exe

· Executable File: VerUpdate.exe

NOTE:
See appendix C, section C-3 of the I&RTS, and the Version Description Document for the Developers Toolkit for more information on the DII COE developer’s tools.

NOTE:
Using the “-h” flag with any of these development tools will provide a help screen show including all of the options for running each tool.

NOTE:
It is expected that additional tools will be added to this subdirectory in the future for working with database segments; e.g., a VerifySegDB tool is expected.

NOTE:
All entries to be typed at the Microsoft Disk Operating System (MS DOS) command prompt or put into a Windows NT file are shown using italics font throughout this document. Items which are underlined require the developer to substitute segment specific information.

· COE Runtime tools API Libraries and Object Code

· Archive: COECom.lib

· Archive: COESeg.lib

· Archive: COETools.lib

· Archive: COEUserprompts.lib

NOTE:
Refer to the DII COE Programmers Manuals for more information on using these APIs.

· C Header Files for Development Tools APIs

· Header File: DIITools.h

· Sample Segments

· SampleAcctGrp Folder of Segmentation Descriptor Files

· SampleAgg Folder of Segmentation Descriptor Files

· SampleAggChild Folder of Segmentation Descriptor Files

· SampleCOTS Folder of Segmentation Descriptor Files

· SampleDataGlobal Folder of Segmentation Descriptor Files

· SampleDataLocal Folder of Segmentation Descriptor Files

· SampleDataSegment Folder of Segmentation Descriptor Files

· SampleSW Folder of Segmentation Descriptor Files

· SampleSW.P1 Folder of Segmentation Descriptor Files

· Examples for using the DII COE Runtime Tools and Print Services. This subdirectory contains COE provided routines or shell scripts such as:

· COEAskUser_example.c

· COEFindSeg_example.c

· COEInstError_example.c

· COEMsg_example.c

· COEPromptPasswd_example.c

· COEPrompt_example.c

The C: disk drive is the default for loading the COE and it’s tools. You may select another disk drive but for the purposes of this document we are assuming the default. The steps to install the DII COE Development Toolkit are as follows:

Step 1:
Load the first Developer’s Toolkit diskette into the (A:) disk drive of the development platform.

Step 2:
Copy the tools from the A: drive to the \h directory on the target drive using file management tools provided by the operating system.

Step 3:
Remove the disk from the (A:) disk drive of the development platform.

Step 4:
Load the second developer’s Toolkit diskette into the (A:) disk drive of the development platform.

Step 5:
Copy the tools from the A: drive to the C:\h directory on the target drive.

Step 6:
Remove the second diskette from the (A:) disk drive of the development platform.

The directory structure created by extracting the Developer’s Toolkit is shown in Figure 4-2. The executables for the tools that can be run are contained in the “\h\DII_DEV\bin” subdirectory.

Figure 4-4: Developer’s Toolkit Directory

4.1.2 Creating Core Segment Directory Structure

This document describes the establishment of a development environment by creating a directory structure and moving files to specific subdirectories. It provides the necessary environment to build the required segment descriptor files, icons, menus, fonts, application default files, data files, library files, and database management system (DBMS) files required for the segment. There are mandatory and optional subdirectories in the directory structure.

The directory structure is based on the runtime directory structure described in Chapters 5 and 6 of the DII COE I&RTS. The DII_DEV subdirectory will have been created as a result of installing the Toolkit as described in paragraph 4.1.3.

Use the following steps to create a core segment development directory structure as shown in Figure 4-3.

Step 1:
Create a development directory for the segment. The name for the created directory; e.g., under “drive:\DEV\SegmentDirectoryName,” where SegmentDirectoryName should be the same as the segment prefix.

Step 2:
Create a “SegDescrip” directory for the segment descriptor files under the SegmentDirectoryName. This directory is needed for all types of NT segments.
Step 3:
Create a “Integ” directory for the integration files under the SegmentDirectoryName. This directory is needed for all types of NT segments to satisfy delivery requirements to DISA.
4.1.3 Including Public APIs in a Segment

If the segment has associated public Application Programmer Interfaces (APIs), certain support files will have to be included with the delivery of the segment to the DISA validation facilities. These support files will eventually be made available to users of the DII COE via media including a developer’s toolkit for the application. These support files will be need by users of the APIs at compile time.

Step 1:
Extend the segment’s directory structure by adding the “help”, “include” and “lib” segment subdirectories using the Windows file manager tools.

Step 2:
Copy header files for public APIs associated with the segment into the “/h/DEV/SegmentPrefix/include” directory. Public header files are those header files that define the calling sequence of the functions provided by the APIs that other segments will need access to.
Step 3:
Copy library object files for public APIs associated with the segment into the “/h/DEV/SegmentPrefix/lib” directory. Library object files are those files that contain the binary code implementing the functions provided by the APIs that other segments will need access to.
Step 4:
Copy help page files for public APIs associated with the segment into the “/h/DEV/SegmentPrefix/help” directory. Help files are those files that would be made available to support users of the APIs through the Windows Help utility.
4.1.4 Creating Core Segmentation Descriptor Files

 This section describes the procedures for generating the required segment descriptor files for all segment types for the Windows NT environment. The files include SegName, ReleaseNotes, VERSION, and SegInfo. All of the required segmentation descriptor files are to be created in the segment’s SegDescrip subdirectory. There are several other segmentation descriptor files which are optional depending upon the specific requirements of the segment being developed. Those other files will be discusses later in section 3 of this document.

NOTE:
The procedures to create segmentation decsriptor files assumes that the developer has expertise in using a Windows NT editor such as “NotePad”, “WordPad”, etc…

NOTE:
The content of the segmentation descriptor files is shown in a shadow box in the next several sections of this document. BOLD font indicates that mandatory items to be included in the file. Underlined items indicates where the developer must substitute a value. OR indicates a choice.

NOTE:
Gray text in the shadow box and the following annotations indicates capabilities that are not yet supported by the current release of the DII COE. This document will be updated to remove the shading each time a new release of the DII COE is available.

NOTE:
Comments in Windows NT ASCII batch descriptor files are preceded by a “REM”.

NOTE:
The SegName, SegInfo, VERSION and ReleaseNotes files must be named without the “.txt” extension which is appended by default with some editors.

4.1.4.1 SegName

The SegName segment descriptor file is required for all segment types. The SegName segment descriptor file contains information identifying the segment being created. Most of this information was should have been determined as a result of following the text in paragraphs 2.6, 2.7, 2.8 and 2.9 of this document. The keywords $TYPE, $NAME, and $PREFIX are required in each SegName file. Additional keywords depend on segment types. COE-component segments, for example, may not contain $SEGMENT, $PARENT, or $CHILD keywords. All other segments must have one $PARENT keyword or one or more $CHILD keywords, or one or more $SEGMENT keywords.

Aggregate segments are useful when a software application consists of several related segments. An aggregate segment speeds up the installation process by automatically installing all child segments when the parent segment is selected for installation by the operator. Aggregate segments may also be assigned to an account group. Thus the $SEGMENT can occur in the same SegName file with either a CHILD attribute and referenced parent segment or a PARENT attribute and referenced child segments.

Step 1:
Generate the SegName segment descriptor file using the following format:
FORMAT

$TYPE: SegmentType 1[:attribute2]

$NAME:name3

$PREFIX:SegmentPrefix4

$SEGMENTAcctGrpname:AcctGrpPrefix:AcctGrpHome dir5

OR

$CHILD:ChildName:ChildPrefix:ChildHomeDir6

OR

$PARENT:ParentName:ParentPrefix:ParentHomeDir7

$COMPANY_NAME:CompanyName8

$PRODUCT_NAME:ProductName9

$LOADCOND15 Condition that must be satisfied

$KEY:COE16:Authorization Key Obtained from DII COE Chief Engineer

$EQUIV17:AliasNamer: AliasPrefixr

$EXCLUDE18AcctGrpname9:AcctGrpSegmentPrefix10:AcctGrphome dir11
EXAMPLE

SegName file for the Logistics Data Tracking System Segment.

$TYPE: SOFTWARE

$NAME: Logistics Data Tracking System

$PREFIX: LDTS

$SEGMENT: C4I:C4I:/h/AcctGrps/C4I

1
$TYPE:SOFTWARE: The $TYPE keyword must be assigned one of the following values: SOFTWARE, COTS, ACCOUNT GROUP, DATA, DATABASE, or PATCH. See paragraph 2.7 of this document to determine which to select. Most software developed for a government Service or agency would be of the SOFTWARE type.

NOTE: The DATABASE type is not yet supported by the DII COE software. The work-around is to use the SOFTWARE type for database segments.

2
attribute: AGGREGATE , COE, CHILD and DCE. The AGGREGATE attribute is indicated if the segment being created is a collection of segments that are to be installed and removed as one unit. Only one of this collection of segments can be the parent segment. The PARENT keyword is used for this segment. All other segments in the group are child segments; the CHILD keyword is used for those related child segments.

Authorized segments may specify the attribute of being a COE-component segment. COE-component segments are similar to aggregate segments in that one segment serves the role of a parent segment and all others are children to that parent. The parent segment is similar to an account group segment which is affected by a collection of child component segments. However, there are important differences between COE-component segments and aggregate segments, and between the parent COE-component segment and account groups. For example, exactly one segment is designated as the parent COE component for the entire systems (and its directory is /h/COE). Also, all segments identified as COE components must use the $KEY keyword. Section 5.4.8 of the I&RTS should be consulted for additional details.

Segment types that have the Web attribute are either Web servers or Web-application segments (e.g., Web clients). By definition, Web servers are also COE-component segments, so they have that implied attribute as well. Web applications may or may not be COE components, and so must indicate explicitly whether or not they are. Other than specifying the Web attribute, no additional segment descriptors are presently required beyond those identified for all other segments.

The Generic attribute is provided to allow a segment to indicate that it should be automatically made a member of all “regular” account groups. This means that the segment, unless it indicates otherwise, will be made a participant of all account groups except those which are character-interface-based (e.g., CharIF) or accessed through remote execution account groups such as RemoteX. This capability is provided for two reasons. First, some segments should be made a member of virtually every account group. An example is a Web browser which is set up to provide access to HTML help pages. Such a segment should be a member of the following: the System Admin account group; the Security Admin account group; the Database Admin account group; and the operator account group (e.g., GCCS, ECPN). It is convenient that this happen automatically without the need for the segment to explicitly list every account group it is to be a member of. Such segments do not need to express any affected account group in the SegName descriptor. Second, some segments developed for one system may be generally applicable to other mission systems, yet this may not have been realized when the segment was created. Using the Web browser example, if it is packaged for GCCS and it states GCCS is the affected account group, the segment’s SegName descriptor will need to be modified to use it for a different system such as ECPN or GCSS. Declaring the segment to have the generic attribute avoids this problem.

3
$NAME: name: The $NAME keyword must be included for all segment types. name is the segment name consisting of a string of up to 32 alphanumeric characters (spaces permitted).

4
$PREFIX:SegmentPrefix: The $PREFIX keyword must be included for all segment types. The SegmentPrefix is a string of up to 6 alphanumeric characters (no spaces). Should be consistent with configuration management and segment registration process. Cannot use reserverd segment prefixes identified above. Should (but not required) be the same as the segment directory name and best if all caps are used.
5
$SEGMENT: AcctGrpname: AcctGrpSegmentPrefix: AcctGrpHomedir: The $SEGMENT keyword required for all SOFTWARE type segments and used to list the affected account groups that a segment is assigned to. All SOFTWARE segments must be associated with a an account group segment. There are two account groups (System Administration and Security Administration) that are delivered with the DII COE Kernel. There are at least two other account groups (Database Administrator, C4I) available as COE Segments. AcctGrpname is the Account group segment name affected by the segment. AcctGrpPrefix is the prefix of account group segment affected by the segment. AcctGrpHomeDir is the home directory of the account group affected by the segment. The affected account group is the account group for which the segment being created will be accessible through when creating “Profiles” of functional capability which one or more users/operators can assume. There can be multiple affected account groups and thus multiple $SEGMENT lines in this file.
6
$CHILD: ChildName:ChildPrefix:ChildHomeDir: DII COE Keyword is optional and used to list the children if and only if the AGGREGATE or COE attribute has been identified and the segment is a child segment. Multiple $CHILD lines can be used in this file. ChildName is the name of a child segment consisting of a string of up to 32 alphanumeric characters (spaces permitted). ChildPrefix is the prefix of the referenced child segment. ChildHomeDir is the home directory of the referenced child segment.

7
$PARENT: ParentName: ParentPrefix:ParentHomeDir DII COE keyword is optional and used to list the parent if and only if the AGGREGATE or COE attribute has been listed and the segment is the parent segment for the aggregate or COE component. . Only one line with $PARENT can be included in the file. ParentName is the name of a child segment consisting of a string of up to 32 alphanumeric characters (spaces permitted). ParentPrefix is the prefix of the referenced child segment. ParentHomeDir is the home directory of the referenced child segment.

8
$COMPANY_NAME:CompanyName CompanyName is inserted into the registry by the COE Installer tool to conform to Windows programming practices.

9
$PRDUCT_NAME:ProductName ProductName is inserted into the registry by the COE Installer tool to conform to Windows programming practices.

NOTE:
The keywords $LOADCOND documented in the I&RTS is not supported at this time.

Step 2:
Review the file on the screen and verify that the correct segment identification information is contained in the file.

15$LOADCOND Used to indicate that a CHILD segment in an aggegate is only to be loaded conditionally; e.g.., it is not already on disk or only if it is a later version.
16$KEY This keyword is required for all segments that have the attribute COE CHILD, COE PARENT, or WEB SERVER.

17$EQUIV. This optional keyword may appear multiple times. It is used to define aliases for a segment. It is primarily intended for account group segments and is to assist in migrating legacy segments from an earlier COE (e.g., JMCIS or GCCS COE) to the DII COE. Aliasname is the desired alias and Aliasprefix is the alias segment’s prefix (e.g., $EQUIV:JMCIS:JMC).
18$EXCLUDE This optional keyword is used with segments with a generic attribute. It is used to indicate to which account group(s) the generic segment is not to be automatically added.

Refer to I&RTS section 5.5.1.10 of the DII COE I&RTS for more information on the SegName descriptor file.
4.1.4.2 Version
The VERSION segment descriptor file is required for all segment types. The Version segment descriptor file contains the time and date of when the segment was created. It must be created using an editor and then can be updated by using the DII COE TimeStamp tool from the DII COE Developers Toolkit.

Step 1:
Generate the Version segment descriptor file using the following format:

Format

version #1:date2
Example

VERSION file for the Logistics Data Tracking System Segment.

1.0.0.0:10/30/97

1
version # = developer specified version number of the segment. Section 3.1 of the I&RTS indicates the format for the primary version number. This format uses uses the form a.b.c.d where:

 a = major release indicating a significant change in the architecture or operation of the segment.

 b = minor release indicating the addition of new features but the fundamental segment architecture remains unchanged. A minor release may require relinking to take advantage of updated API libraries.

 c = maintenance release in which new features may be added but the emphasis is on performance improvement and error correction

 d = developer release number

For COE component segments, a, b and c are assigned by DISA. For mission application segments in a COE-based system such as GCCS or GCSS, the program manager assigns the first three digits. Developers of the segment define the last digit. Version number digits are always incremented. This approach provides a clear and consistent way to compare successive releases of a segment. This version numbering approach permits the identification of a specfic version of dependent segments. See section 3.4.4.19 that describes the REQUIRES section of the SegInfo segment descriptor file.

 Refer to I&RTS section 3.1 for additional information on version numbering.

2
date = date that the segment was created (or last modified) using the form mm/dd/yy.

NOTE:
Specification of the year in 4 digit format (as documented in the I&RTS) is not yet supported by the DII COE segmentation tools. Use a 2 digit year format.

NOTE:
There must be a carriage return after the first line. If not, the TimeStamp tool will not be able to be used to update the time and date.

Step 2:
Execute the TimeStamp tool to automatically update the Version descriptor file with the current time and date using the following command:
>> TimeStamp -p /h/DEV SegPrefix
Step 3:
Review the file on the screen and verify that the current date is contained in the file.

Refer to paragraph 5.5.1.12 of the DII COE I&RTS for more detailed information.
4.1.4.3 Release Notes

The ReleaseNotes segment descriptor file is required for all segment types. The primary purpose of the ReleaseNotes descriptor file is to provide information that is important to the user installing the segment.

Step 1:
Generate the ReleaseNotes file and include information of interest to an operator. Do not include information on point of contacts, phone numbers or help information. Do include known problems that have been fixed, new features introduced by this release and any special instructions for installing the segment. This file cannot include tabs or embedded control characters.

Example

Release Notes for the Interservice Material Accounting and Control System (IMACS) Application software, Version 2.1 Released October 1997

The installer will be prompted for the IMACS IP address. Please refer to the IMACS

installation guide for the correct IP address for the IMACS host.

This segment requires the ORACLE Reports Runtime and Discoverer 2000 software. Also,

Cool:Gen must be installed prior to running IMACS.

Launching the IMACS application will automatically kick off Cool:Gen.

Refer to paragraph 5.5.1.7 of the DII COE I&RTS for more detailed information.
4.1.4.4 SegInfo

The SegInfo file contains several types of information used to integrate and install the segment. The different types of information are contained in sections that have headings within brackets “[]”. A few of these sections are required for all NT segment types.

The section heading in square brackets is followed by keywords, commands, filenames, directory names, pathnames, etc. Not all of the identified section items (commands, etc.) are required within a section. The order of the sections and of the items in the sections is not important.

The “[Security]” section is covered here because it is required for all segments. The Full segmentation and abbreviated segmentation sections that follow will address additional SegInfo data that will be required.

4.1.4.4.1 [Security]

The Security section of the SegInfo segment descriptor file is required for all segments. The Security section of the SegInfo segment descriptor file indicates the highest classification level for a segment and will always be UNCLASS for an abbreviated COTS segment.

Step 1:
Generate the Security section of the SegInfo descriptor file using the following format:
Format

[Security]

 classification level1
Example

SegInfo file for the Logistics Data Tracking System Segment.

[Security]

UNCLASS

1
classification level = UNCLASS, CONFIDENTIAL, SECRET, or TOP SECRET indicating the segment classification level of the segment.

Refer to paragraph 5.5.2.24 of the DII COE I&RTS for more information.

4.2 Full Segmentation for NT Software

NOTE:
The procedures in this section can only be performed after the segment developer has performed the steps in section 4.1, Common Segmentation Procedures for Windows NT, of this document. If these have not been performed, go back to that section first.

The procedures in this section can be used to develop new segments comprised from newly developed and/or migrated software applications that are intended to execute in a Windows NT runtime environment. These procedures assume a basic understanding of Windows NT commands and the Windows NT runtime environment. Segments targeted for Windows NT 3.51 and 4.0 are currently supported. The process of segmenting an application is shown in Figure 4-1.

Figure 4-1: DII COE Segmentation Process

4.2.1 Enhance Segment Directory Structure

This section describes the establishment of a full segmentation development environment by creating all of the required subdirectories and moving files to those subdirectories. It provides the necessary environment to build the required segment descriptor files, icons, menus, fonts, application default files, data files, library files, and database management system (DBMS) files required for the segment. There are mandatory and optional subdirectories in the directory structure.

The directory structure is based on the runtime directory structure described in Chapters 5 and 6 of the DII COE I&RTS. The DII_DEV subdirectory will have been created as a result of installing the Toolkit as described in paragraph 4.1.3.

Use the following steps to enhance the segment development directory structure as shown in Figure 4-3.

Step 1:
Create the “bin”, and “data” subdirectories under each segment using the Windows file manager tools.
Step 4:
The runtime environment may need to include icons, menus, fonts or application default files. Icons and extensions to the COE desktop menus provide a means to launch an application from the DII COE desktop. Fonts may have to be added if the DII COE default font set does not support all of the applications’s required font types. Look in the “/h/COE/data/fonts” directory to view the default set of DII COE fonts. App-defaults are static files sometimes containing preferences and configuration parameters for an application that get read when the application is launched. Create the following subdirectories under c:\h\DEV\SegmentPrefix\data if needed:

Icons

Menus

fonts

app-defaults

Step 5:
If a DATABASE type segment is being developed, create the following subdirectories under c:\h\DEV\SegmentPrefix

DBS_files

Install

Step 6:
If a PATCH type segment is being developed, generate the following subdirectories under c:\h\DEV\SegmentPrefix
Patchname.Pn

NOTE:
Append “:Pn” to specify specific patch compatibility, where Pn is the patch number that must be included with the current version of the segment to make it backwards compatible with the version that Pn has been appended to.

[image: image1.wmf]SegPrefix

SegDescrip

/h

install

lib

Icons

Menus

bin

fonts

app_defaults

data

DBS_files

DEV

integ

Figure 4-2: Full Segment Development Directory Structure

4.2.2 Load Windows NT Directories with Appropriate Files

Perform the following steps to load the COE development environment with the required files (Note: SegmentPrefix is the prefix assigned to the segment by the developer):

4.2.2.1 Executables Files

Copy all executable files associated with the segment into th e“\h\DEV\SegmentPrefix\bin” directory. This segment directory may include subdirectories under bin if desired. Executable files can be batch files and/or binary executables. It is very common for an icon to be assigned to launch a batch file which will establish execution time environment variables and launch executable files within the bin directory. Linking icons to the batch or executables will be covered later in this section of the document.

4.2.2.2 Data Files

Copy all data files associated with the segment into “\h\DEV\SegmentPrefix\data”. Files defining an icon image file should be copied to the segment’s “data/Icon” directory. Application default files should be included in the segment’s “data/app-defaults” directory. Additional fonts required by the segment should be copied to the segment’s “data/fonts” directory. This segment directory may include additional subdirectories under data if desired.

4.2.2.3 Database Installation Script Files

Copy script files for creating database tables into “\h\DEV\SegmentPrefix\install” if the segment creates a database using one of the DII COE database segments.
4.2.3 Create/Enhance Segment Descriptor Files

This section describes the procedures for generating the required segment descriptor files for all segment types. The required segment descriptor files for all segment types are SegName, ReleaseNotes, VERSION, and SegInfo.

Step 1:
Get into the c:\h\DEV\SegmentPrefix\SegDescrip directory for creating descriptor files.

Step 2:
Create the segment descriptor files in following subparagraphs using an editor or by using the appropriate tools as specified.

NOTE:
The procedures in this document to create segmentation descriptor files assumes that the developer has expertise in using a Windows NT editor.

NOTE:
The content of the segmentation descriptor files are shown in a shadow box in the next several sections of this document. BOLD font indicates mandatory items to be included in the specific files. Underlined items indicate where the developer must substitute a value. An “OR” indicates a choice.

NOTE:
Gray text in the shadow box and the following annotations indicates capabilities that are not yet supported by the current release of the DII COE. This document will be updated to remove the shading each time a new release of the DII COE is available and capabilities documented here are made available.

NOTE:
The I&RTS encourages the use of the “.txt” extension for segmentation descriptor files in ASCII format. This currently causes problems using the Segmentation Tools. DO NOT USE EXTENSIONS ON THE SEGMENTATION DESCRIPTOR FILE NAMES. The editor on Windows NT 4.0 platforms automatically puts a “.txt” extension on these filenames. Drop down into DOS Command Line mode and use the “RENAME” command to remove the “.txt” extension.

4.2.3.1 SegInfo

The SegInfo segment descriptor file is required for all segment types. The SegInfo file contains several types of information used to integrate and install the segment. The SegInfo sections required depend upon the type of segment being created. Table 4-3 shows the required and optional sections within the SegInfo file for each segment type.

The Hardware and Security sections of SegInfo are required for all segment types. The security section is described in paragraph 4.1.4.4 of this document. Some SegInfo sections described below are required, optional, or not required for some segment types. Each SegInfo section includes a heading in square brackets followed by keywords, commands, filenames, directory names, pathnames, etc. Not all commands are required within the section.

Table 4-1: SegInfo Section Dependencies per Segment Type

SegInfo

Sections
Software Segment
Account Group Segment
COTS Segment
Data Segment
Patch Segment

AcctGroup
N
R
N
N
N

AppPaths

COEServices
O
O
O
O
O

Community
O
O
O
O
O

Comm.deinstall
O
O
O
O
O

Compat
O
O
O
O
O

Conflicts
O
O
O
O
O

Data
N
N
N
R
N

Database

Direct
O
O
O
O
O

FilesList
O
O
R
O
O

Hardware
R
R
R
R
R

Help

Icons
O
R
O
N
O

Menus
O
R
O
N
O

Network

Permissions
O
O
N
N
O

Processes
O
O
O
N
O

Registry

Requires
O
O
O
O
O

Security
R
R
R
R
R

SharedFile

R = Required, O = Optional, N = Not Applicable

NOTE:
Items grayed out are not implemented for Windows NT COE at this time.
4.2.3.1.1 [Hardware]

The Hardware section of SegInfo is required for all segment types. It specifies the computing resources required by the segment. Specifically, it identifies the platform using a predefined keyword, the RAM in kilobytes, the amount of disk space and growth disk space in kilobytes, the disk partitions and growth disk partitions required in kilobytes, the operating system using a predefined keyword, and the amount of temporary space required during installation.

Step 1:
Generate the Hardware section of SegInfo using the following format:

[Hardware]

$CPU1:platform2

$MEMORY3:size4

$DISK5:size6[:reserve]7 or $PARTITION8:diskname9:size10[:reserve7]

•

•

•

$PARTITION8:diskname9:size10[:reserve7]

$OPSYS11:operating system12

$TEMPSPACE13:size14
1
$CPU = DII COE keyword establishes platform type. The $CPU keyword must be defined for all segment types.

2
platform = target runtime platform dependency identified as one of the following:

ALL:
Platform Independent

PC:
All PC platforms that support NT

PC486:
Defined for INTEL PC486 workstations

PENTIUM:
Defined for INTEL PENTIUM workstations

3
$MEMORY = DII COE keyword defines segment memory requirements. The $MEMORY keyword is required for all segments except for DATA segments.

4
size (MEMORY) = amount of RAM required by the segment in Kilobytes

5
$DISK = DII COE keyword defines segment disk requirements.

6
size (DISK) = size of the segment (and all subdirectories) at install time expressed in Kilobytes. Once this value is established, the COE tool CalcSpace can be used to automatically calculate the size of the segment and update the $DISK keyword accordingly.

7
reserve = amount of extra disk space in Kilobytes reserved to accommodate future growth of the segment.

8
$PARTITION = DII COE keyword defines segment partitions.

9
diskname = explicit partition name (e.g., /home2) or an environment variable name of the form DISK1, DISK2, ...DISK99. The installation software will set the environment variables DISK1, DISK2, etc... to the absolute pathname where space has been allocated. $PARTION keywords are assumed to be in sequential order.

10
size (PARTITION) = size of the segment in Kilobytes on a particular disk partition. Installation software does not allow a segment to be split across multiple disk partitions. However, the PostInstall script does allow for splitting the segment across multiple disk partitions.

11
$OPSYS = DII COE keyword defines operating system requirement of the segment.

12
operating system = DII COE supported operating systems (as listed in I&RTS paragraph 5.3) for MACHINE_CPU. The only operating system for the PC is NT.

13
$TEMPSPACE = DII COE keyword defines temporary space requirements of the segment.

14
size (TEMPSPACE) = amount of temporary diskspace in kilobytes that are used during the installation process. If space is available, the installation software sets the variable COE_TMPSPACE to the absolute pathname where space is allocated. If not enough space can be found, an error message is displayed to the operator.

Refer to paragraph 5.5.15 of the DII COE I&RTS for more detailed information.

4.2.3.1.2 [AcctGroup]

The AcctGroup section of the SegInfo descriptor file is required for all Account Group type segments.

Step 1:
Generate the AcctGroup section of the SegInfo segment descriptor file using the following format:
[AcctGroup]

$group name1:group ID2:: profile flag3:home dir4:default profile name5
$CLASSIF6:classification7
Note: Two “colons” after the group ID filed are required.

1
group name = Alphanumeric string up to 15 characters used to identify this account group. The account group name must be unique (i.e., no other account group may have the same name).

2
group id = Group ID to be inserted into the password file for accounts created from this group.

3
profile flag = 0 if no profiles are allowed, otherwise 1.

4
home dir = Home directory for the account group (e.g., c:\DII\Segments\SysAdm). The path name may contain up to 256 characters. SysAdm is currently the only one available with the DII COE Kernel.

5
default profile name = Alphanumeric string up to 15 characters identifying the account group's default profile. This name is ignored unless the profile flag is non-zero.

6
$CLASSIF = DII COE keyword to specify classification of an Account Group Segment.

7
Classification level = classification of the profile and can be UNCLASS, CONFIDENTIAL, SECRET, or TOP SECRET. The classification level for a profile will default to TOP SECRET unless the segment has defined it otherwise.

Refer to paragraph 5.5.1 of the DII COE I&RTS for more detailed information.

4.2.3.1.3 [AppPaths]

This section of the SegInfo segment descriptor file is not currently implemented.

4.2.3.1.4 [COEServices]

The COEServices section of the SegInfo segment descriptor file is used to specify changes in services provided by the operating system. The COEServices section of the SegInfo segment descriptor file is optional for all segment types.

Step 1:
Generate the COEServices section of the SegInfo segment descriptor file using the following format:

[COEServices]

$SERVICES[:servicescomment1]

name:port2:protocol3{:alias4}

name:port2:protocol3{:alias4}

•

•

socketname5:port2:protocol3{:alias4}

1
servicescomment = comment included in the “/etc/services” system file for the port.

2
port = port number requested. Numbers 2000-2999 are reserved for COE segments.

3
protocol = tcp or udp.

4
alias = the symbolic name used to refer to the assigned port.

5
socketname = name of the socket add to the “/etc/services” system file.

Refer to paragraph 5.5.3 of the DII COE I&RTS for more detailed information.

4.2.3.1.5 [Community]
Many of the descriptor files direct the installation software to insert, delete, replace or otherwise alter blocks of text in ASCII files. The [Community] section of the SegInfo segment descriptor file is used to issue similar commands to the installation software for which no other segment descriptor file can be used. It is intended to be a “catch all” and should be used carefully, and only when there is no other way to accomplish the modifications required. VerifySeg will fail any segment which attempts to use a Community descriptor file to modify a file that is already handled by another descriptor file. The [Community] section of the SegInfo segment descriptor file is optional for all segment types.

This section is primarily used to make changes to blocks of text in ASCII files. The blocks of text are delimited by braces ‘{‘ and “’}’ ; the opening and closing braces are on lines by themselves. When command require that a textual search be done, embedded spaces and control characters are ignored during the search. Section 5.5.4 of the I&RTS contains various examples for using this section of the SegInfo file.

Step 1:
Generate the “Community” section of the SegInfo segment descriptor file using the following format:

[Community]

$FILE:filename1

$APPEND

{

stuff to be appended to filename

}

$FILE:filename1

$COMMENT:char2

{

comment out this text using the char character in file filename.

}

$FILE:filename1

$DELETE[ALL]

{

delete this block of text from file filename. If ALL is specified, delete all occurrences in the file filename.

}

$FILE:filename1

$INSERT[ALL]

{

Find the first occurrence of this text in file filename and insert the text that follows. If ALL is specified, insert the second block of text after every occurrence of the first block.

}

{

Insert this second block of text after the first block of text in the file filename.

}

$FILE:filename1

$REPLACE[ALL]

{

Find the first occurrence of this text in file filename and replace it with the text that follows. If ALL is specified, replace all occurrence of the first block of text with the second block of text.

}

{

Replace with this block of text in file filename.

}

$FILE:filename1

$SUBSTR: DELETE [ALL] | INSERT [ALL] | REPLACE [ALL]

{

When performing a textual search for these commands, search for a matching substring instead of a complete block of text. Text substring to be replaced or inserted are as indicated in the given second substring. If ALL is specified the substring replacement, deletion, or insertion is to take place for each occurrence of the specified first substring.

}

{

text string to be deleted, inserted into or replaced with.

}

$FILE:filename1

$UNCOMMENT: char3

{

text to be uncommented using character char3.

}

1
filename = file that commands are to be acted on.

2
char (COMMENT) = character to comment out text strings/blocks.

3
char (UNCOMMENT) = character to delete for uncommenting text strings/blocks.

Refer to paragraph 5.5.4 of the DII COE I&RTS for more detailed information.

4.2.3.1.6 [Comm.deinstall]
The Comm.deinstall section of the SegInfo segment descriptor file is used to undo what was done by the community segment descriptor section of SegInfo. It acts as a “catch-all” to insert, delete, append and replace blocks of text in ASCII files to return them to their original state prior to changes made by the commands in the Community section of SegInfo. The Comm.deinstall section of the SegInfo segment descriptor file is optional for all segment types. This section is not required for permanent segments even if the Community section of the SegInfo file is used.

Step 1:
Generate the “Community” section of the SegInfo segment descriptor file using the following format:

[Comm.deinstall]

This section uses commands that are the inverse of the commands used in the Community section of the SegInfo file. See section 4.4.4.6 for those commands.

Refer to paragraph 5.5.5 of the DII COE I&RTS for more detailed information.

4.2.3.1.7 [Compat]

The Compat section of the SegInfo segment descriptor file is used to indicate the degree to which backward compatibility is preserved with the newly released segment. The Compat section of the SegInfo segment descriptor file is optional for all segment types.

Step 1:
For segments which are backwards compatible with all previous releases of that segment, generate the Compat section of SegInfo by using the following format:

[Compat]

+ALL

For segments which are not backwards compatible with any previous releases of that segment, generate the Compat section of SegInfo by using the following format:

[Compat]

 -NONE

For segments which are backwards compatible with specific previous releases of that segment starting from an earliest release, generate the Compat section of SegInfo by using the following format:

[Compat]

$EARLIEST

version1
1
version = specific version number of the DII COE version format “a.b.c.d”.

For segments which are backwards compatible with all previous releases of that segment with exceptions, generate the Compat section of SegInfo by using the following format:

[Compat]

$EXCEPTIONS

version11
version21

•

•

versionn1
1
version = specific version number of the DII COE version format “a.b.c.d”.

For segments which are backwards compatible with SPECIFIC previous releases of that segment, generate the Compat section of SegInfo by using the following format:

 [Compat]

$LIST

version11
version 21

•

•

version n1
1
version = specific version number of the DII COE version format “a.b.c.d”.

NOTE:
Append “:Pn” to specify specific patch compatibility, where Pn is the patch number that must be included with the current version of the segment to make it backwards compatible with the version that Pn has been appended to.

Refer to paragraph 5.5.6 of the DII COE I&RTS for more detailed information.

4.2.3.1.8 [Conflicts]

The Conflicts section of the SegInfo segment descriptor file is used to specify known inter-segment conflicts. The Conflicts section of the SegInfo segment descriptor file is optional for all segment types.

Step 1:
Generate the Conflicts section of the SegInfo segment descriptor file by using the following format:

[Conflicts]

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]

•

•

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]
1
Segment name = name of conflicting segment as determined by the SegName descriptor file.

2
SegmentPrefix = conflicting segment’s segment prefix.

3
home dir = conflicting segment’s home directory.

4
version = specific version of conflicting segment.

5
patch = specific patches of conflicting segment.

Refer to paragraph 5.5.7 of the DII COE I&RTS for more detailed information.
4.2.3.1.9 [Data]

The Data section of the SegInfo segment descriptor file is required for data segments and is used to describe where data files are to be logically loaded and their scope (global, local, or segment).

Step 1:
Generate the Data section of the SegInfo segment descriptor file using the following format:

[Data]

$SEGMENT1:segname2:segmentprefix3: home dir4

OR

$LOCAL5:segname2:segmentprefix3: home dir4

OR

$GLOBAL6:segname2: segmentprefix3: home dir4
1
$SEGMENT = DII COE keyword used when the data segment is local to the workstation and is managed and accessed by a single software segment.

2
segname = string of up to 32 alphanumeric characters (spaces permitted) of the affected segment.

3
segmentprefix = string of up to 6 alphanumeric characters of the affected segment (no spaces, used in directory structure). Should be consistent with configuration management and segment registration process. Cannot use reserved segment prefixes identified in paragraph 5.3 of the DII COE I&RTS.

4
home dir = “c:\h\segmentprefix” for the affected segment.

5
$LOCAL = DII COE keyword used when the data segment is limited to a local workstation but can be accessed by all users and applications local to that workstation.

6
$GLOBAL = DII COE keyword used when the data segment can be accessed by every workstation, every application and every operator having LAN access.

Refer to paragraph 5.5.8 of the DII COE I&RTS for more detailed information.

4.2.3.1.10 [Database]

This section of the SegInfo segment descriptor file is not currently implemented. It is reserved for future use to implement database specific requirements as they evolve.

4.2.3.1.11 [Direct]

The Direct section of the SegInfo segment descriptor is used to issue special instructions to the install software. The Direct section of the SegInfo segment descriptor file is optional for all segment types.

Step 1:
Generate the Direct section of SegInfo by using the following format:

[Direct]

$ACCTADD1: executable2

$ACCTDEL3: executable4

$NOCOMPRESS5

$REBOOT6

$REMOTE7 [:XTERM | :CHARBIF]

$ROOT8:PostInstall | PreInstall | DEINSTALL

$CMDLINE9:

$KEY10:request11:key12

•

•

$KEY10:request11:key12

$PROFADD13: executable14

$PROFDEL15: executable16

$PROFSWITCH17: executable18

$SUPERUSER191
1
$ACCTADD = DII COE Keyword used to identify executables to be run upon adding an account. Permission from the DII COE Chief Engineer is required to use this keyword.

2
executable (ACCTADD) = executable file to be executed when an account is added.

3
$ACCTDEL = DII COE Keyword used to identify executables to be run upon deleting an account. Permission from the DII COE Chief Engineer is required to use this keyword.

4
executable (ACCTDEL) = executable file to be executed when an account group is deleted.

5
$NOCOMPRESS = DII COE Keyword used to suppress compression of the segment by the MakeInstall tool.

6
$REBOOT = DII COE Keyword to have installation software perform an automatic reboot after the software installation is complete. The operator is provided an opportunity to override the reboot at install time.

7
$REMOTE = DII COE Keyword to allow remote execution of the segment. This option can be directed to XTERM only or character interface only using the XTERM and CHARBIF keywords respectively.

8
$ROOT = DII COE Keyword in the PostInstall, PreInstall and/or DEINSTALL must be run with administrator privileges.

Refer to paragraph 5.5.12 of the DII COE I&RTS for more detailed information.
4.2.3.1.12 [FilesList]

The FilesList section identifies all the files and directories that a segment adds to the system. This FilesList section of the SegInfo segment descriptor file is required only for COTS segment types.

Step 1:
Generate the FilesList section of SegInfo by using the following format:

[FilesList]

$DIRS1

directory 12

directory 22

•

•

•

directory n2

$FILES3

file 14

file 24

•

•

•

file n4
1
$DIRECTORY = DII COE keyword identifies segment directories

2
directory = directories to be created by the segment. The $PATH variable can be set by including “$PATH:pathname” preceding the occurrence of the $DIRS. The $DIRS keyword must precede the list of directories.

3
$FILES = DII COE keyword identifies segment files.

4
file = files that are to be added by the segment outside of the segments directory. All files under a segments individual directories are assumed to belong to the segment. The $PATH variable can be set by including $PATH:pathname preceding the occurrence of the $FILES. The $FILES keyword must precede the list of filenames.

Refer to paragraph 5.5.14 of the DII COE I&RTS for more detailed information.

4.2.3.1.13 [Help]

This section of the SegInfo segment descriptor file is not currently implemented.

4.2.3.1.14 [Icons]

The Icons section of the SegInfo segment descriptor file is used to identify the file in the segments data/icon directory that defines the icons that are made available on the desktop to launch segment functions. The Icons section of the SegInfo segment descriptor file is required for AcctGrp segment types and optional for COTS, Software, and Patch segment types.

Step 1:
Generate the Icons section of the SegInfo segment descriptor file using the following format:

[Icons]

icon file1
1
icon file = name of file in the Segments data/icons directory that associates segment executables with icons. The name can be up to 32 characters.

Step 2:
Generate the Icon file for the segment in the SegmentPrefix\data\Icons directory using the following format:

window title1: icon path2 : executable path3 : comments4
1
window title = title placed in the application window.
2
icon path = file path to the icon image. It should be the same as the executable path for the Windows NT COE.
3
executable path = full path of the executable to be launched by the menu program.
4
comments = comment field to describe the icon .

Refer to paragraph 4.4.2 of the DII COE Programming Guide for more detailed information on adding icons to the COE. Refer to paragraph 5.5.17 of the DII COE I&RTS for additional information.

4.2.3.1.15 [Menus]

The Menu section of the SegInfo segment descriptor file is used to add menu entries required by a segment. The entry in the SegInfo file refers to menu files generally contained in the “/h/DEV/SegmentPrefix/data/Menus” directory. The menu files are formatted to pass menu information to the Desktop Environment so that pull down menus, cascade menus, and menu items can be created. The Menus section of the SegInfo segment descriptor file is used to list the files under the /data/menus directories defining menus to be used by and extended by the segment. The Menus section of the SegInfo segment descriptor file is required for AcctGrp segment types and optional for COTS, Software, and Patch segment types.

Step 1:
For Account Group segments, generate the Menus section of the SegInfo segment descriptor file using the following format:

[Menus]

menu file 11

menu file 21

•

•

menu file n1
For COTS, Software, and Patch segments, generate the “Menus” section of the SegInfo segment descriptor file with the following format:

[Menus]

menu file 11:[affected menu file2]

menu file 21:[affected menu file2]

•

•

menu file n1:[affected menu file2]

1
menu file = name of menu file listed in the segment’s /data/menus directory.

2
affected menu file = the name of the account group that should be updated by the segment’s menu file. Affected menu file is optional. If no affected menu file is listed, then menu file is simply added to the list of menu files which comprise the account group’s menu templates.

Refer to the DII COE Programming Guide and Executive manager API documentation for specific information on how to construct the menu files.

Refer to paragraph 5.5.19 of the DII COE I&RTS for more detailed information.

4.2.3.1.16 [Network]

This section of the SegInfo segment descriptor file is not currently implemented.

4.2.3.1.17 [Permissions]

The Permissions section of the SegInfo segment descriptor file is used to describe objects and permissions to grant or deny for the objects. The Permissions section of the SegInfo segment descriptor file is optional for AcctGrp, Software and Patch segment types.

Step 1:
Generate the Permissions section of SegInfo by using the following format:

[Permissions]

object name 11:permission abbreviation2:permission3

object name 21:permission abbreviation2:permission3

•

•

object name n1:permission abbreviation2:permission3
1
object name = item to be controlled.

2
permission abbreviation = single character abbreviation for the permission (A = Add, D = Delete, E = Edit, P = Print, R = Read, V = View, X = Transmit). Additional abbreviations may be used as required.

3
permission = permission type of access to grant or deny (Add, Delete, Read, etc...).

Refer to paragraph 5.5.21 of the DII COE I&RTS for more detailed information.
4.2.3.1.18 [Processes]

The Processes section of the SegInfo segment descriptor file is used to identify processes associated with the segment. The Processes section of the SegInfo segment descriptor file is optional for AcctGrp, COTS, Software and Patch segment types.

Step 1:
Generate the Processes section of SegInfo by using the following format:

[Processes]

$PATH1:pathname2

$BOOT3

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5}

$BACKGROUND6

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5}

$SESSION7

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5}

$SESSION_EXIT8

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5}

$PERIODIC9:hours

$RUN_ONCE10

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5

$PRIVILEGED11

process 14 {parameters5}

process 24 {parameters5}

•

•

process n4 {parameters5

$KEY2:Processes13:key14
1
$PATH = DII COE Keyword used to establish directory containing ‘PROCESS’ executables.

2
pathname = the path of the directory containing the process file. Default pathname is segment’s bin subdirectory. .

3
$BOOT = DII COE keyword used to identify processes that are to be launched when the system is booted.

4
process = name of PROCESS executable to launch.

5
parameters = optional PROCESS dependent parameters.

6
$BACKGROUND = DII COE keyword used to identify background processes.

7
$SESSION = DII COE keyword used to identify processes that are to be launched when a user starts a session.

8
$SESSION_EXIT = DII COE keyword used to identify processes that run prior to terminating a login session.

9
$PERIODIC = DII COE keyword used to identify processes that are to be run at some specified interval (in hours). This keyword may be used multiple times in this section if there are multiple individual processes to be run at varying periodic times. If a constant period is used for multiple processes, then all such processes could be listed under the one instance of the keyword with the appropriate hourly value.

10
$RUN_ONCE= DII COE keyword used to identify “one-shot” processes that are to run the next time the system is started. Such processes are to be run only the next time the system is started and never thereafter.

11
$PRIVILEGED= DII COE keyword used to identify processes that are to run in privileged (i.e., root) mode.

12
$KEY= DII COE keyword used to identify an authorization key from the DII COE Chief Engineer. Use of boot-time, background, periodic, privileged, and “one shot” processes requires authorization by the Chief Engineer. The authorization key applies to all requests within the Processes section of the SegInfo file.

13Processes = Constant value indicating that this key is pertinent to the Processes section of the SegInfo file.

14 key= authorization key value obtained from DII COE Chief Engineer.

Refer to paragraph 5.5.25 of the DII COE I&RTS for information.
4.2.3.1.19 [Registry]

This section of the SegInfo segment descriptor file is not currently implemented.

4.2.3.1.20 [Requires]

The Requires section of the SegInfo segment descriptor file is used to identify segment dependencies. Although the Requires section of the SegInfo segment descriptor file is optional for all segment types, it is highly recommended that a statement indicating “no dependencies exist” if this is the case.

Step 1:
Generate the Requires section of the SegInfo segment descriptor file by using the following format:

[Requires]

[$HOME_DIR1:pathname2]

segment name 13: SegmentPrefix4:home dir5

segment name 23: SegmentPrefix4:home dir5

•

•

segment name n3: SegmentPrefix4:home dir5
1
$HOME_DIR = optional keyword to assign pathname.

2
pathname = directory path of the segment home directory.

3
segment name = name of the segment that must be loaded prior to the current segment.

4
SegmentPrefix = prefix of the segment that must be loaded prior to the current segment.

5
home dir = home directory of the segment that must be loaded prior to the current segment.

Refer to paragraph 5.5.29 of the DII COE I&RTS for more information.

4.2.3.1.21 [SharedFile]

This section of the SegInfo segment descriptor file is not currently implemented.

4.2.4 Making the Segment Installable by the DII COE

This section describes the procedures for generating the installation related segment descriptor files for all segment types. These segment descriptor files include DEINSTALL, FileAttribs, PostInstall, PreInstall, and PreMakeInstall. They are to be created by the segment developer on an as-needed basis. Table 4-2 shows the required and optional sections for each segment type.

4.2.4.1 DEINSTALL

The DEINSTALL segment descriptor file is executed when an operator elects to remove a segment via the DII COE Installer tool. It can be invoked by the operator to specifically remove a segment or invoked automatically when a segment is being updated. The DEINSTALL file can be a shell script created with an editor or an executable (compiled) program. The DEINSTALL segment descriptor file is optional for all segment types however, if this file does not exist, then the segment cannot be removed with the COEInstaller. In order for the COEInstaller to be able to deinstall a segment, a deinstall file must exist and contain at least one line so as not to have an empty file.

Step 1:
Generate the DEINSTALL segment descriptor file and include steps to invoke the scripts and/or executables required to remove all traces (files, directories) associated with the segment.

Step 2:
Rename the file to DEINSTALL.BAT if the file is a batch file. Rename the file to DEINSTALL.exe if it is a binary/executable file.

Refer to paragraph 5.5.11 of the DII COE I&RTS for more detailed information.

4.2.4.2 PostInstall

The PostInstall segment descriptor file contains operations specific to installing the segment that must be performed after the segment software has been copied to the disk and installed by the COE software. The file can be a shell script file or an executable file. The PostInstall segment descriptor file is required for Patch type segments and optional for all other segment types.

Step 1:
Generate the PostInstall segment descriptor file and include steps to invoke scripts and/or executables associated with the segment. Do not duplicate any operations performed by the COE installation software. Prompt the user as required.

Step 2:
Use the %INSTALL_DIR% environment variable in any batch file to refer to the home directory of where the DII COE Installer will install the segment directory structure. This ensures that the segment is relocatable. The COEInstall tool will automatically set this variable to the correct value.

Step 3:
Use the COEMsg, COEPrompt, COEPromptPasswd runtime tools to prompt the operator during the execution of PostInstall. Use the COEInstError runtime tool to perform error handling. If errors are returned, the PostInstall process will abort the installation of the segment and the segment directory will automatically removed. See Appendix C of the I&RTS and the DII COE Programmers manuals for more information on the use of these runtime tools.

Step 4:
Rename the file to PostInstall.BAT if the file is a batch file. Rename the file to PostInstall.exe if it is a binary/executable file.

Refer to paragraph 5.5.22 of the DII COE I&RTS for more detailed information.

4.2.4.3 PreInstall

The PreInstall segment descriptor file contains operations specific to installing the segment that must be performed before the segment software has been copied to the disk. The file can be a shell script file or an executable file. The PreInstall segment descriptor file is optional for all segment types.

Step 1:
Generate the PreInstall segment descriptor file and include steps to invoke scripts and/or executables associated with the segment. Do not duplicate any operations performed by the COE installation software. Prompt the user as required.

Step 2:
Rename the file to PreInstall.BAT if the file is a batch file. Rename the file to PreInstall.exe if it is a binary/executable file.

Refer to paragraph 5.5.23 of the DII COE I&RTS for more detailed information.

4.2.4.4 PreMakeInst

The PreMakeInst segment descriptor file is executed by the MakeInstall tool prior to creating the segment media. It contains “clean-up” commands for deleting temporary files and/or directories associated with the segment. The PreMakeInstall segment descriptor file is optional for all segment types.

Step 1:
Generate the PreMakeInst segment descriptor file using the following format:

$PATH1:pathname2

rm tempfile 13

rm tempfile 23

•

•

rm tempfile n3

rmdir tempdir 14

rmdir tempdir 24

•

•

rmdir tempdir n4
1
$PATH = DII COE keyword establishes base directory where relative files and directories will be deleted from.
2
pathname = directory path establishes base directory where relative files and directories will be deleted from.
3
tempfile = name of temporary files to be deleted.
4
tempdir = name of temporary directory to be deleted.

Step 2:
Rename the file to PreMakeInstall.BAT if the file is a batch file. Rename the file to PreMakeInstall.exe if it is a binary/executable file.

Refer to paragraph 5.5.24 of the DII COE I&RTS for more detailed information.

4.2.5 Verifying the Segment

The tool VerifySeg must be run against the created abbreviated segmentation segment to validate that all associated segment descriptor files are complete and correct. VerifySeg must be rerun if any changes are made to any segment descriptor. VerifySeg will also be run by the COE Integrators (DCTF, OSF) to ensure all submitted segments conform to the DII COE I&RTS.

Execute the VerifySeg tool to automatically generate the Validated descriptor file. This file will contain the version of VerifySeg, the date and time of validation, who performed that validation, a count of errors and warnings, and a checksum.

Run VerifySeg from the DOS command line using the following steps:

Step 1:
Move (cd) to the bin directory of the DII COE Developers’ Tools directory (e.g., DII_DEV\bin.
Step 2:
Type the following command sequence from the MS DOS prompt:
> VerifySeg -p \h\DEV segmentdirectoryname
where segmentdirectoryname is the segment home directory under “c:\h\DEV”.

Step 3:
The tool will display all errors and warnings using the following format:

(E) ---

Error Message

•

•

•

(E) ---

Error Message

(W) ---

Warning Message

•

•

•

(W) ---

Warning Message

Errors were found validating segment path/segment directory name.

These errors must be fixed for Validation

Results of Verification:

Totals

Errors:

{number of errors}

Warnings:
{number of warnings}

Step 4:
Review the results of the VerifySeg activity. If errors or warnings are indicated, changes will be required to the segment descriptor files and/or other files within the segment directory to resolve those errors and warnings.

Step 5:
Rerun VerifySeg until all the errors = 0. Warnings are acceptable to continuing on with the segmentation effort but will impact the degree of COE runtime compliance that can be achieved by the segment.

NOTE:
DO NOT edit a Segment Descriptor file without re-running VerifySeg.

Refer to paragraph C-3.22 of the DII COE I&RTS for more information.

4.2.6 Testing that the Segment is Installable

The DII tools TestInstall and TestRemove can be used to determine if the segment is installable before the install disk is made.

Step 1:
Run TestInstall using the following command (See Section C2.11 of the I&RTS for directions on running the tool) from the DOS prompt:

>> TestInstall -p \h\DEV segmentdirectoryname

Step 2:
Observe the following response:

**

TestInstall - Version x.x.x.x

**

The following options have been selected

**

Print Warning Messages

**

Segments to be Installed:

**

Segment: {Segment Name}
Path: c:\h\DII_DEV

********************* WARNING ***************************

TestInstall may modify COE files already in use.

This may cause unpredictable results if COE processes are already running.

Make sure no other COE processes are running before using TestInstall.

Do you want to continue with the TestInstall? (y/n):

Step 3:
Select ‘y’ followed by a carriage return.

Step 4:
Observe some or all of the following response:

Processing {Segment Directory Name}

Successfully ran preprocessor on Segment {Segment Directory Name}

[No PreInstall script for Segment {Segment Directory Name}]

[No PostInstall script for Segment {Segment Directory Name}]

{WARNING Messages, if any}

Successful installation of {Segment Directory Name}

NOTE:
Make any necessary corrections to the segment descriptor files based on returned error messages and rerun steps 1-4 as necessary. Rerun VerifySeg and TestInstall until the TestInstall program runs without issuing error messages. Each time TestInstall is rerun, select ‘y’ when asked to run TestRemove first.

Step 5:
Run TestRemove using the following command (See Section C2.11 of the I&RTS for directions on running the tool) from the DOS prompt:

>> TestRemove -p \h\DEV segmentdirectoryname

Step 6:
Observe the following response:

********************* WARNING ***************************

TestRemove may modify COE files already in use.

This may cause unpredictable results if COE processes are already running.

Make sure no other COE processes are running before using TestRemove.

Do you want to continue with the TestRemove? (y/n):

Step 7:
Select ‘y’ followed by a carriage return.

Step 8:
Observe some or all of the following response:

SETTING
c:\h\DII_DEV\SegDirectoryName FOR INSTALL_DIR

{WARNING Messages, if any}

Successful Removal of {Segment Directory Name}

Refer to paragraph C-3.16 and C-3.17 of the DII COE I&RTS for more information.

4.2.7 Making Segment Install Media

The section describes how to make the installation disk for the abbreviated segment. This installation disk is to be read by the COE Segment Installer.

Step 1:
Type the following command from the MS DOS prompt to start the make install tape process:
>> MakeInstall -p \h\DEV segmentdirectoryname
Step 2:
System will respond with:

>> Enter full pathname to use (i.e., A:\) or type ‘q’ to quit.
Step 3:
Enter ‘a:\’ at the command line.

Step 4:
When the “Make Install” window appears enter the Creator Name, Serial Number and any Comments in the appropriate fields in the window then click on the “OK” button.

NOTE:
The values to be entered here are free form and can be any value desired by the developer.

Step 5:
“Processing Segment: SegmentPrefix” message will appear. Select the “OK” button to continue.
Step 6:
Observe the following on the display:

Please insert disk 1.

WARNING: ALL Data Will Be Lost

Step 7:
Upon a successful MakeInstall the following is displayed:

Segment Index:
1 (Always 1 for abbreviated segments)

Segment Name
(As identified in the SegName file)

Segment Path
(where segment is being developed.)

Segment Version
(COE version number as indicated in the VERSION file)

Segment Attribute
(As indicated in the SegName file, or ‘other’ if none)

Segment Type
COTS

Segment Hardware
(As indicated in the [Hardware] section of SegInfo)

Segment Security
(As indicated in the [Security] section of SegInfo)

Start Disk

1 (Always 1 for abbreviated segments)

End Disk

1 (Always 1 for abbreviated segments)

Number of Segments to write to device: 1 (Always 1 for abbreviated segments)

Step 8:
Select the “OK” button.

Refer to paragraph C-3.10 of the DII COE I&RTS for more information.

4.2.8 Test Installation of Segment Installation

Verify that the segmented application can be loaded by the COE Segment Installer and function correctly in the COE runtime environment. The actual functional and performance testing is specific to the segmented application and thus it is left up to the developer to identify the appropriate test procedures. As a minimum, the developer should verify that the segment is installable and that it can be launched from the DII COE desktop. In the case of the DII COE for Windows NT, launching the segmented application will be done via the native Windows NT desktop.

Install the segmented application via the COE Segment Installer by performing the following steps on a Windows NT platform with the DII COE installed:

Step 1:
Logon on to a Windows NT platform as the system administrator.
Step 2:
(Windows NT 3.5.1) Select the System Administrator Window via the System Administrator Icon in the Program Manager window and launch the DII Installer from the System Administrator window.

(Windows NT 4.0) Select the Start button on the lower left cornet of the screen and select Programs/System Administration and launch the DII Installer.
Step 3:
Insert the first diskette of the segmented application in the disk drive.

Step 4:
Select the appropriate source drive (usually A:) from the COE Segment Installer window.

Step 5:
Select the appropriate target drive (usually C:) from the COE Segment Installer window.

Step 6:
Select the Read TOC button from the COE Segment Installer window and wait for the contents of the diskette to show up in the Installation Segments window.

Step 7:
Select the segmented application and verify that it shows as reverse video.

Step 8:
Select the ‘Release Notes’ button and verify that the release notes are displayed correctly.

Step 9:
Select the ‘Close’ button.

Step 10:
Select the Conflicts button and verify that conflicts identified during the segmentation process, if any, are displayed by COE Segment Installer.

Step 11:
Select the ‘Close’ button.

Step 12:
Select the ‘Requires’ button and verify that dependent segments identified during the segmentation process are displayed by COE Segment Installer.

Step 13:
Select the ‘Close’ button.

Step 14:
Select the Install button and respond to any prompts by the segmented application’s installation scripts.

Step 15:
Verify that the COE Segment Installer responds with a segment was successfully installed message and shows up in the “installed segments” area of the COE Segment Installer.

Step 16:
If the installation failed, review the installation log via the pull-down menu and take appropriate action to resolve the problem. This may involve modification of the segmentation descriptor files, rerunning VerifySeg, TestInstall, TestRemove and MakeInstall to create a new version of the segment.

Step 17:
Once the segmented application successfully installed, verify that the segment is listed in the “Currently Installed Segments” window and exit the COE Segment Installer.

Step 18:
Launch the segment from the native Windows NT desktop using icons or menus as applicable.

Step 19:
Verify that the segment launched successfully and start perform functional and performance testing appropriate for the specific segment

Step 20:
Launch the COE Segment Installer from the System Administrator Window.

Step 21:
Select the segmented application from the installed segments are of the COE Installer window.

Step 22:
Select the DEINSTALL button from the COE Segment Installer and verify that the DEINSTALL.exe or DEINSTALL.bat executes.

Step 23:
Once the segmented application successfully deinstalled, exit the COE Segment Installer.

Step 24:
Using the native file management tools, verify that the icons and/or menus associated with the segmented application are no longer installed.

Refer to paragraph C-2.17 of the DII COE I&RTS for more information.

4.3 Abbreviated Segmentation for NT COTS Software

NOTE:
The procedures in this section can only be performed after the segment developer has performed the steps in section 4.1, Common Segmentation Procedures for Windows NT, of this document. If these have not been performed, go back to that section first.

The procedures in this section can be used to develop new NT-based COE COTS segments that are installed using the vendor-provided installation program rather than the COE Segment Installer tool. The COTS products must be installable out-of-the-box. Even though the vendor’s installation program for the COTS product is used for the installation, it is necessary to provide some segment description information for use by the COE Segment Installer in order to recognize the existence of the NT COTS segment and to be aware of certain characteristics of the COTS product, such as disk space used. The process of developing this abbreviated segment information is similar to that described in section 4.2 and presumes the existence of the necessary development environment as described in section 4.1. Segment descriptor files must be created for use by the COE Segment Installer.

The abbreviated segment approach will eventually be replaced by the COEScanCOTS Tool (refer to I&RTS paragraph C.2.39). This tool will be able to automatically generate the required segmentation descriptor files for COTS products that are installed on a Windows NT system with the DII COE Kernel installed.

Using the abbreviated segmentation method requires approval from the DII COE Chief Engineer. It in effect requires a waiver on the following I&RTS Appendix B checklist items:

For Level 4 Compliance: 4-3, 4-13 and 4-15

For Level 5 Compliance: 5-16, 5-19, and 5-72

For Level 6 Compliance: 6-44 and 6-49

For Level 7 Compliance: 7-32 and 7-33

For Level 8 Compliance: 8-17

Two separate and independent actions are required to install NT COE abbreviated segments.

1.
Install the COTS product using the vendor-provided installation program. Installing out-of-the-box means that NT registry entries are accomplished by the vendor’s installation program and that vendor specific program groups will be created. If vendor program group icons/menus need to be included in a specific account group’s profile, they will need to be copied after the product is installed.

2.
Install the corresponding abbreviated segment disk using the COE Segment Installer runtime tool.

4.3.1 Segment Directory Structure

Abbreviated segments for NT COTS products need only the SegDescrip subdirectory.

4.3.2 Create/Modify Segment Descriptor Files

This section describes the procedures for generating the segment descriptor files for the abbreviated segmentation of NT COTS products. The required segment descriptor files for this type of segmentation are SegName, SegInfo, ReleaseNotes, PreInstall and VERSION. The DEINSTALL file is also needed if the COTS product is not to be considered a permanent segment for the NT COE.

Step 1:
Move (cd) into the segment’s directory; e.g., drive:\Dev\\SegmentPrefix\SegDescrip directory

Step 2:
Create the abbreviated segment descriptor files discussed in following subparagraphs using an editor or by using the appropriate tools as specified.

Only two segment descriptor files (DEINSTALL and PostInstall) need an extension in the filenames. For an abbreviated segmentation, the .BAT extension should be used for these two files. The filenames for the other segment descriptor files should not have an extension.

NOTE:
Comments in Windows NT ASCII segment descriptor files are preceded by a “REM”.

NOTE:
The PreInstall and DEINSTALL files must have the “.BAT” extension if they are batch files or a “.EXE” if they are binary files.

4.3.2.1 SegInfo

The SegInfo file contains several types of information used to integrate and install the segment. The different types of information are contained in sections that have headings within brackets “[]”. Only a few of these sections are required for an NT COTS product abbreviated segment. The [Security] section was already created using the procedures in section 4.1 of this document.

The section heading in square brackets is followed by keywords, commands, filenames, directory names, pathnames, etc. Not all of the identified section items (commands, etc.) are required within a section. The order of the sections and of the items in the sections is not important.

4.3.2.1.1 [Hardware]

The Hardware section of the SegInfo file is required for an abbreviated segmentation. This section of the file is used to specify the computing resources required by the segment.

Generate the Hardware section of SegInfo using the following format:
Format

[Hardware]

$CPU1:platform2

$MEMORY3:size4

$DISK5:size6

$OPSYS7:operating system8
Example

[Hardware]

$CPU:Pentium

$MEMORY:8000

$DISK:1000

$OPSYS:NT

1
$CPU = DII COE keyword is used to identify the platform type on which the COTS product can be installed.

2
platform = one of the following should be used:

ALL:
Platform Independent

PC:
All PC platforms that support NT

PCxxx:
Defined for specific version of INTEL-based workstations such as PC386 or PC486

PENTIUM:
Defined for INTEL PENTIUM workstations

(Additional choices for this identifier are expected to be available later as the COE adopts other platforms with the NT operating system; e.g., DEC Alphas)

3
$MEMORY = This keyword identifies memory requirements for the product as provided in the vendor documentation.

4
size (MEMORY) = amount of RAM required by the product in Kilobytes. For abbreviated segments, set this value to 1000.

5
$DISK = DII COE keyword identifies product disk requirements as provided in the vendor documentation.

6
size (DISK) = size of the product (and all subdirectories) at install time expressed in Kilobytes.

7
$CPU = DII COE keyword is used to identify the operating system type on which the COTS product can be installed.

8
OperatingSystem = Should always be set to “NT” for abbreviated NT COTS segments.

Refer to paragraph 5.5.2.14 of the DII COE I&RTS for more information.

4.3.2.1.2 [Conflicts]

The Conflicts section of the SegInfo segment descriptor file is used to specify known inter-segment conflicts. The Conflicts section of the SegInfo segment descriptor file is optional for an abbreviated segmentation. If there are known conflicts between the COTS product for which the abbreviated segment represents and other segments, generate the Conflicts section of the SegInfo segment descriptor file by using the following format:

Format

[Conflicts]

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]

•

•

Segment name1: SegmentPrefix2:home dir3 [:version4{:patch5}]
Example

[Conflicts]

Bad Segment:BADSEG:/h/BADSEG

1
Segment name = name of conflicting segment as determined by the SegName descriptor file.

2
SegmentPrefix = conflicting segment’s segment prefix.

3
home dir = conflicting segment’s home directory.

4
version = specific version of conflicting segment.

5
patch = specific patches of conflicting segment.

Refer to paragraph 5.5.2.7 of the DII COE I&RTS for more information.

4.3.2.1.3 [FilesList]

The FilesList section identifies all the files and directories that a segment adds to the system. This FilesList section of the SegInfo segment descriptor file is required for an abbreviated segmentation.

Generate the FilesList section of SegInfo file by using the following format:
Format

[FilesList]

$DIRS1

directory 12

directory 22

•

•

•

directory n2

$FILES3

file 14

file 24

•

•

•

file n4
Example

[FilesList]

$DIRS1

\h\LogSeg

1
$DIRS = DII COE keyword identifies product directories

2
directory = New directories to be created by the product into the NTFS filesystem. The The $DIRS keyword must precede the list of one or more new directories. If the COTS product is to be installed within the abbreviated segment’s bin directory, specify the \h\SegDirectory as the directory.

3
$FILES = DII COE keyword identifies files that will be installed into existing folders with the NTFS filesystem that fall outside the \h\SegDirectory folder.

4
file = Files created by the product that will be installed into existing folders with the NTFS filesystem that fall outside the \h\SegDirectory folder. The $FILES keyword must precede the list of filenames.

NOTE: The pathname may include a disk drive designation. If it is given, the full pathname including the drive identifier must be within double quotes.

Refer to paragraph 5.5.2.13 of the DII COE I&RTS for more information.
4.3.2.2 DEINSTALL

The DEINSTALL segment descriptor file is required for an abbreviated segment unless the COTS product is to be viewed within the DII COE as a permanent segment. This file, however, in an abbreviated segmentation will typically not have any executable statements in it. This is possible since the removal of the actual COTS product will not be performed by the COE Segment Installer tool. Rather, either the vendor provided uninstall program or the NT operating system capabilities will be used to remove the product. If the actual COTS product is removed, the COE Segment Installer tool must be used to remove the accompanying abbreviated segment.

Step 1:
Generate the DEINSTALL.BAT segment descriptor file containing a single comment identifying the segment name and indicating that it is an abbreviated segment. Ue the “REM” to procede the comment line.

Step 2:
Ensure that the extension .BAT is included in the file name: DEINSTALL.BAT.

Example

REM This is the DEINSTALL for the Segment “Logistics Mobility” Segment

REM This file must exist for the segment to be un-installable. No other

REM actions are required at DEINSTALL time.

Refer to paragraph 5.5.1.1 of the DII COE I&RTS for more information.

4.3.2.3 PreInstall

The PreInstall segment descriptor file contains operations specific to installing a segment that must be performed before the files associated with the segment are extracted from the media onto the disk. The file can be a shell script or binary executable file. For abbreviated segments, the PreInstall segment descriptor file will be used to verify that the COTS package has already been installed and that the version of the installed software is the same as expected by the abbreviated segment. Specifically, PreInstall will read the Windows NT registry to determine if the COTs software exists and what version it is. If the COTS software has not been installed, then the PreInstall file should notify the operator that they must first load the COTS and then invoke COE Segment Installer once again. PreInstall should then terminate the abbreviated segment's installation. Error messages will be displayed to the operator via the COEInstError API. Thus an abbreviated segment could never be installed without first having had the actual COTS software already installed.

The C language program below can be used as a template for performing the check on the Windows NT registry. It has been used for a PreInstall file for an abbreviated segment for Netscape Navigator. Compilation of this code requires the DIITools.h header file and the COEUserPrompts.lib library file and the COEUserPrompts.dll file to be resident on the machine. These file are installed with the installation of the DII COE Developers Toolkit.

 NOTE:
The Kernel installation does not currently set the environment variable path to include the location of the dll, so the dll needs to be included in the segment’s SegDescrip directory for insurance that the routine will execute accordingly.
#include <windows.h>

#include <stdio.h>

#include <winreg.h>

#include <DIITools.h>

#include <io.h>

int main (int argc, char *argv[])

{

char message[]= "Unable to locate Netscape Navigator 3.01.\nYou must

install Netscape Navigator 3.01 prior to segment installation.";

long

RetVal;

HKEY

key=0;

/* Variable to get the COTS executable and path from the registry */

char *ExecAndPathString = NULL;

/* Variable to get size of string containing the COTS executable and path from the registry*/

unsigned long theSize = 0;

/* Open the installation key */

RetVal = RegOpenKeyEx (HKEY_LOCAL_MACHINE, "SOFTWARE\\Netscape\\Netscape

Navigator\\3.01", 0, KEY_READ, &key);

if (RetVal != ERROR_SUCCESS)

{

/* Call DII/COE Library Function */

RetVal = COEInstError (message);

return (RetVal);

}

/* Open the AppPath key */

RetVal = RegOpenKeyEx (HKEY_LOCAL_MACHINE,

"SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\App Paths\\Netscape.exe",

0, KEY_READ, &key);

if (RetVal != ERROR_SUCCESS)

{

/* Call DII/COE Library Function */

RetVal = COEInstError (message);

return (RetVal);

}

/* Get the size of the string containing the executable and path. */

RetVal = RegQueryValueEx (key, NULL, NULL, NULL, NULL, &theSize);

if (RetVal != ERROR_SUCCESS)

{

/* Call DII/COE Library Function */

RetVal = COEInstError (message);

return (RetVal);

}

/* Allocate the buffer. */

ExecAndPathString = (char *) malloc (theSize);

/* Get the value into the buffer. */

RetVal = RegQueryValueEx (key, NULL, NULL, NULL, (unsigned char

*)ExecAndPathString, &theSize);

if (RetVal != ERROR_SUCCESS)

{

/* Call DII/COE Library Function */

RetVal = COEInstError (message);

return (RetVal);

}

/* Check executable really exists */

if ((_access (ExecAndPathString, 0)) == -1)

{

/* Call DII/COE Library Function */

RetVal = COEInstError (message);

return (-1);

}

return (RetVal);

}
4.3.3 Verifying the Created Abbreviated Segment

The tool VerifySeg must be run against the created abbreviated segmentation segment to validate that all associated segment descriptor files are complete and correct. VerifySeg must be rerun if any changes are made to any segment descriptor. VerifySeg will also be run by the COE Integrators (DCTF, OSF) to ensure all submitted segments conform to the DII COE I&RTS.

Execute the VerifySeg tool to automatically generate the Validated descriptor file. This file will contain the version of VerifySeg, the date and time of validation, who performed that validation, a count of errors and warnings, and a checksum.

Run VerifySeg from the DOS command line using the following steps:

Step 1:
Move (cd) to the bin directory of the DII COE Developers’ Tools directory (e.g., DII_DEV\bin.
Step 2:
Type the following command sequence from the MS DOS prompt:
> VerifySeg -p \h\DEV segmentdirectoryname
where segmentdirectoryname is the segment home directory under “c:\h\DEV”.

Step 3:
The tool will display all errors and warnings using the following format:

(E) ---

Error Message

•

•

•

(E) ---

Error Message

(W) ---

Warning Message

•

•

•

(W) ---

Warning Message

Errors were found validating segment path/segment directory name.

These errors must be fixed for Validation

Results of Verification:

Totals

Errors:

{number of errors}

Warnings:
{number of warnings}

Step 4:
Review the results of the VerifySeg activity. If errors or warnings are indicated, changes will be required to the segment descriptor files and/or other files within the segment directory to resolve those errors and warnings.

Step 5:
Rerun VerifySeg until all the errors = 0. Warnings are acceptable to continuing on with the segmentation effort but will impact the degree of COE runtime compliance that can be achieved by the segment.

NOTE:
DO NOT edit a Segment Descriptor file without re-running VerifySeg.

4.3.4 Testing that the Abbreviated Segment is Installable

The DII tools TestInstall and TestRemove can be used to determine if the abbreviated segment is installable before the install disk is made. The Windows NT COTS product on which the abbreviated segment is being generated for must already exist of the platform prior to running TestInstall and TestRemove. NT COTS product per the vendor provided media and installation instructions.

Step 1:
Run TestInstall using the following command (See Section C2.11 of the I&RTS for directions on running the tool) from the DOS prompt:

>> TestInstall -p \h\DEV segmentdirectoryname

Step 2:
Observe the following response:

**

TestInstall - Version x.x.x.x

The following options have been selected:

Print Warning Messages

Segments to be Installed:

Segment: {Segment Name}
Path: c:\h\DEV

********************* WARNING ***************************

TestInstall may modify COE files already in use.

This may cause unpredictable results if COE processes are already running.

Make sure no other COE processes are running before using TestInstall.

Do you want to continue with the TestInstall? (y/n):

Step 3:
Select ‘y’ followed by a carriage return.

Step 4:
Observe some or all of the following responses:

Processing {Segment Directory Name}

Successfully ran preprocessor on Segment {Segment Directory Name}

Do you want to run PreInstall for Segment {Segment Directory Name}

Step 5:
Select ‘y’ followed by a carriage return. Observe the following response:

[No PostInstall script for Segment {Segment Directory Name}]

{WARNING Messages, if any}

Successful installation of {Segment Directory Name}

NOTE:
Make any necessary corrections to the segment descriptor files based on returned error messages and rerun steps 1-4 as necessary. Rerun VerifySeg and TestInstall until the TestInstall program runs without issuing error messages. Each time TestInstall is rerun, select ‘y’ when asked to run TestRemove first.

Step 5:
Run TestRemove using the following command (See Section C2.11 of the I&RTS for directions on running the tool) from the DOS prompt:

>> TestRemove -p \h\DEV segmentdirectoryname

Step 6:
Observe the following response:

********************* WARNING ***************************

TestRemove may modify COE files already in use.

This may cause unpredictable results if COE processes are already running.

Make sure no other COE processes are running before using TestRemove.

Do you want to continue with the TestRemove? (y/n):

Step 7:
Select ‘y’ followed by a carriage return.

Step 8:
Observe some or all of the following responses:

SETTING
c:\h\DII_DEV\SegDirectoryName FOR INSTALL_DIR

{WARNING Messages, if any}

Successful Removal of {Segment Directory Name}

4.3.5 Making Abbreviated Segment Install Media

This section describes how to make the installation disk for the abbreviated segment. This installation disk is to be read by the COE Segment Installer.

Step 1:
Type the following command from the MS DOS prompt to start the make install tape process:
>> MakeInstall -p \h\DEV segmentdirectoryname
Step 2:
System will respond with:

>> Enter full pathname to use (i.e., A:\) or type ‘q’ to quit.
Step 3:
Enter ‘a:\’ at the command line.

Step 4:
When the “Make Install” window appears enter the Creator Name, Serial Number and any Comments in the appropriate fields in the window then click on the “OK” button.

NOTE:
The values to be entered here are free form and can be any value desired by the developer.

Step 5:
“Processing Segment: SegmentPrefix” message will appear. Select the “OK” button to continue.
Step 6:
Observe the following on the display:

Please insert disk 1.

WARNING: ALL Data Will Be Lost

Step 7:
Upon a successful MakeInstall the following is displayed:

Segment Index:
1 (Always 1 for abbreviated segments)

Segment Name
(As identified in the SegName file)

Segment Path
(where segment is being developed.)

Segment Version
(COE version number as indicated in the VERSION file)

Segment Attribute
(As indicated in the SegName file, or ‘other’ if none)

Segment Type
COTS

Segment Hardware
(As indicated in the [Hardware] section of SegInfo)

Segment Security
(As indicated in the [Security] section of SegInfo)

Start Disk

1 (Always 1 for abbreviated segments)

End Disk

1 (Always 1 for abbreviated segments)

Number of Segments to write to device: 1 (Always 1 for abbreviated segments)

Step 8:
Select the “OK” button.

4.3.6 Test Installation of Abbreviated Segment Installation

Even though the abbreviated segment may have satisfied the requirements of TestInstall, it is advisable to verify that the abbreviated segment disk can be used with the COE Segment Installer. An abbreviated segment refers to a COTS product, installable out-of-the-box using vendor-provided installation procedures. The installation of the actual COTS product is performed independent of the DII COE. The COE Segment Installer, however, must be used to install information about the abbreviated segment to reflect its existence in the COE environment. Thus, the developer of the abbreviated segment should verify that the abbreviated segment is appropriately handled by the COE Segment Installer.

The correct order for installation is to first load the COTS product and then to load the abbreviated segment. The COTS product is loaded per vendor provided instructions and media. The abbreviated segment is loaded via the DII COE Segment Installer tool.

The test procedures below call for first attempting to install the abbreviated segment before the COTS software is installed. The install process for the abbreviated segment should fail because the COTS product has not made the appropriate entries in the Windows NT registry. The developer is also required to verify that the PreInstall will fail if the version expected is different from the actual version of the COTS software resident on the machine.

Test the abbreviated segment disk with the COE Segment Installer by performing the following steps on a Windows NT platform with the DII COE installed:

Step 1:
Logon on to a Windows NT platform, with the DII COE installed, as the system administrator.

Step 2:
Uninstall the COTS product (if installed on the test platform) using the vendor provided install/uninstall instructions and software.
Step 3:
(Windows NT 3.5.1) Select the System Administrator Window via the System Administrator Icon in the Program Manager window and launch the DII Installer from the System Administrator window.

(Windows NT 4.0) Select the Start button on the lower left cornet of the screen and select Programs/System Administration and launch the COE Segment Installer. Refer to section 4.1.1.2 of this document for additional information in installing software.

Step 4:
Insert the first diskette of the segmented application in the disk drive.

Step 5:
Select the appropriate source icon drive (usually A:) from the COE Segment Installer window toolbar or from the file menu using the “Select Source” option.

Step 6:
Select the appropriate target drive (usually C:) from the COE Segment Installer window toolbar menu option or the appropriate icon.

Step 7:
Select the Read TOC icon from the COE Segment Installer window and wait for the contents of the diskette to show up in the Installation Segments window.

Step 8:
Select the segmented application by clicking on the box and verify that it is selected as indicated by a checkmark.

Step 9:
Select the ‘Release Notes’ option from the available segments menu option and verify that the release notes are displayed correctly.

Step 10:
Select the ‘Close’ button.

Step 11:
Select the Conflicts option from the available segments menu option and verify that conflicts identified during the segmentation process, if any, are displayed by COE Segment Installer.

Step 12:
Select the ‘Close’ button.

Step 13:
Select the ‘Requires’ option from the available segments menu option and verify that dependent segments identified during the segmentation process are displayed by COE Segment Installer.

Step 14:
Select the ‘Close’ button.

Step 15:
Select the Install option from the available segments menu option and respond to any prompts by the segmented application’s installation scripts.

Step 16:
Verify that the COE Segment Installer responds with a message indicating that the COTS software must be installed first.

Step 17:
Exit the DII COE Installer tool by selecting the exit option from the file option menu.

Step 18:
Load the COTS product out of the box if it is not already installed on the target platform.
Step 19:
(Windows NT 3.5.1) Select the System Administrator Window via the System Administrator Icon in the Program Manager window and launch the DII Installer from the System Administrator window.

(Windows NT 4.0) Select the Start button on the lower left cornet of the screen and select Programs/System Administration and launch the COE Segment Installer.
Step 20:
Insert the first diskette of the segmented application in the disk drive.

Step 21:
Select the appropriate source drive (usually A:) from the COE Segment Installer window toolbar or from the file menu using the “Select Source” option.

Step 22:
Select the appropriate target drive (usually C:) from the COE Segment Installer window toolbar menu option or the appropriate icon.

Step 23:
Select the Read TOC icon from the COE Segment Installer window and wait for the contents of the diskette to show up in the Installation Segments window.

Step 24:
Select the segmented application application by clicking on the box and verify that it is selected as indicated by a checkmark.

Step 25:
Select the Install option from the available segments option menu of the DII COE Installer window and respond to any prompts by the segmented application’s installation scripts.

Step 26:
Verify that the COE Segment Installer responds with a “segment was successfully installed” message and shows up in the “installed segments” area of the COE Segment Installer.

Step 27:
If the installation failed, review the installation log via the “File” pull-down menu of the DII COE Installer window and take appropriate action to resolve the problem. This may involve modification of the segmentation descriptor files, rerunning VerifySeg, TestInstall, TestRemove and MakeInstall to create a new version of the segment.

Step 28:
Once the segmented application is successfully installed, verify that the segment is listed in the “Installed Segments” window and exit the COE Segment Installer. To exit, choose the exit option from the file option menu.

Step 29:
Launch the segment from the native Windows NT desktop using icons or menus as applicable.

Step 30:
Verify that the segment launched successfully and start perform functional and performance testing appropriate for the specific segment

Step 31:
Launch the COE Segment Installer from the System Administrator Window.

Step 32:
Select the segmented application from the installed segments area of the COE Segment Installer window.

Step 33:
Select the DEINSTALL button from the COE Segment Installer and verify that the DEINSTALL.exe or DEINSTALL.bat executes.

Step 34:
Once the segmented application is successfully deinstalled, exit the COE Segment Installer by selecting the exit option from the file option menu.

Step 35:
Modify the version key of the Windows NT registry of the COTS product to something other than the correct version. (Assumes that the COTS product is installed)

Step 36:
(Windows NT 3.5.1) Select the System Administrator Window via the System Administrator Icon in the Program Manager window and launch the DII Installer from the System Administrator window.

(Windows NT 4.0) Select the Start button on the lower left cornet of the screen and select Programs/System Administration and launch the COE Segment Installer.
Step 37:
Insert the first diskette of the segmented application in the disk drive.

Step 38:
Select the appropriate source drive icon (usually A:) from the COE Segment Installer window toolbar or from the file menu using the “Select Source” option.

Step 39:
Select the appropriate target drive (usually C:) from the COE Segment Installer window toolbar menu option or the appropriate icon.

Step 40:
Select the Read TOC icon from the COE Segment Installer window and wait for the contents of the diskette to show up in the Installation Segments window.

Step 41:
Select the segmented application application by clicking on the box and verify that it is selected as indicated by a checkmark.

Step 42:
Select the Install option from the available segments option menu of the DII COE Installer window and respond to any prompts by the segmented application’s installation scripts.

Step 43:
Verify that the COE Segment Installer responds with a message indicating that the wrong version of the COTS product is installed.

Step 44:
Modify the version key of the Windows NT registry of the COTS product to the correct version.

Step 45:
Select the segmented application application by clicking on the box and verify that it is selected as indicated by a checkmark.

Step 46:
Select the Install option from the available segments option menu of the DII COE Installer window and respond to any prompts by the segmented application’s installation scripts.

Step 47:
Once the segmented application is successfully installed, verify that the segment is listed in the “Currently Installed Segments” window and exit the COE Segment Installer.

Step 48:
Launch the segment from the native Windows NT desktop using icons or menus as applicable.

Step 49:
Verify that the segment launched successfully and start perform functional and performance testing appropriate for the specific segment

Step 50:
Launch the COE Segment Installer from the System Administrator Window.

Step 51:
Select the segmented application from the installed segments window by clicking on the box and verify that it is selected indicated by a checkmark.

Step 52:
Select the uninstall option from the installed segments option menu of the DII COE Installer window and verify that the DEINSTALL.exe or DEINSTALL.bat executes successfully.

Step 53:
Once the segmented application is successfully deinstalled, exit the COE Segment Installer by selecting the exit option from the file option menu.

At this point the creation of the abbreviated segment disk for use by the COE Segment Installer is complete. The created install disk is appropriate for use in conjunction with future installs of the COTS product on an NT COE platform.

4.3.7 Miscellaneous Comments on Abbreviated Segmentation

The COE abbreviated segment will register information only in the HKEY_LOCAL_MACHINE area of the NT registry. The COTS product installation program will make all other necessary entries, including any uninstall information and registration of icons/menus, into other areas of the NT Registry (e.g., HKEY_CLASSES_ROOT),

When the COTS product is installed, a program group for it will appear in the Program Manager. Icons/menus used to launch the COTS application will be in this program group. If it is desired to have these icons/menus in a specific COE account group profile, it will be necessary to copy them, by selecting them and using the Program Manager copy command, from the product’s created program group to the desired COE group.

Developers should confirm in the segment Version Description Document (VDD) that the installation will terminate if the "wrong" version of the COTS is in place. There is no way for the integration facilities to easily verify that the PreInstall does correct version analysis of COTS. Requesting a written affirmation does, however, make it clear that you cannot just change the underlying software without updating the segment that goes with it. This requirement goes a little way down the road toward tight configuration control without the burden of full segmentation.

The Installation Procedures must include a statement that before you can install the segment, you must first have installed the COTS software package. This way, users will not be left to guess the correct procedure.

5 Submitting Segments for Integration and Testing

Segments are formally delivered to a Service or Agency unique DII COE validation facility. Refer to the instructions of the specific validation facility for documentation, software and software labeling requirements. Segments being submitted as DII COE segments are sent the DISA Operations Support Facility (OSF).

When developers deliver abbreviated segments, they must include a copy of the COTS package for testing and they must make it clear how the testers should process that copy to make it ready for installation. This will make it possible for QA to perform the required level of integration testing.

Appendix A: DII COE Runtime Compliance Checklist

The DII COE Runtime Compliance Checklist procedure allows the software developers to self evaluate a software product to run on top of DII COE. There is no formula for calculating a meaningful “score” for this assessment Instead, the results should be used to develop implementation plans for performing tasks necessary to bring applications into desired levels of runtime compliance with the DII COE. A brief description of questions format, which is followed by a level of compliance checklist is indicated below.

Questions Format:

· Level Headings - Eight levels corresponding to the 8 I&RTS Compliance Levels:

- Level 1: Standards Compliance
- Level 5: Minimum COE Compliance

- Level 2: Network Compliance
- Level 6: Intermediate COE Compliance

- Level 3: Workstation Compliance
- Level 7:Interoperable Compliance

- Level 4: Bootstrap Compliance
- Level 8: Full COE Compliance

· Level Categories - Categories corresponding to those question categories identified in the I&RTS appendices B:

- Standards Compliance
- Operating System
- Runtime Environment

- Network services
- GUI Environment
- COTS Products

- Database Services
- DCE Services
- Hardware

- Web Services
- COE Component Products
- Security

- Account Groups
- Aggregate Segments
- Misc.

- Segment Descriptors
- Process Compliance

· Response - Three columns: True, False, and not applicable (N/A).
· Unique Identifier- Unique number for the question that is keyed to the level. The numbers directly correspond to the numbered questions in appendix B of the I&RTS, Release 3.0.
· Reference - Paragraph reference to the I&RTS document or other DII COE document that provides information related to the technical content of the question.

· Impact - The impact denotes the effect of runtime level of compliance questions contained in appendix B of the DII COE I&RTS document on:

SEG - This item indicates that the procedure requires additional scripts.

SRC - This item indicates source code modification is needed.

DEV - Development process may require additional procedure implementations.

DOC - This item indicates that the documentation is required to support the process.

NOTE - Note provides additional information for the user.

· Question Text - Questions represent a subset of the runtime compliance questions contained in appendix B of the DII COE I&RTS. Many of the questions have replaced the word “segment” with the word “application” in order to use these questions prior to the segmentation process. In addition, questions that contain diagonal shading cannot be answered prior to performing segmentation on the candidate software application and thus should be ignored.

A.1 Standards Compliance (Level 1)

Note: Select an item using bold font in the first column or circle it to indicate a response for the corresponding question.

Question
Reference
 Impact

SEG - Sementation File

SRC - Segemnt Source Code

DEV - Development Process

DOC - Documentation

NOTE - Other notes
Standards Compliance

T
F
N/A
1-1
I&RTS 6.0, A6.5.7,

Appendix
NOTE: Answer n/a if target platform is running Unix. This statement is intended to guard against platform configurations that are not sanctioned. It is not intended to apply to target platforms that will not never support a DII COE Kernel (such as platforms running Windows 95).

DEV: Developer may have to check the referenced document to determine if external hardware item required is included on the list.

(NT) Hardware components are Windows NT-compliant as defined by the Microsoft document Microsoft Windows NT Hardware Compatibility List #4094.

Operating System

T
F
N/A
1-2
1.6-6, 1.6-8
NOTE: Answer true if there is a DII COE Kernel available for the target platform’s operating system.

SRC: Compile source code to execute on one of the DII COE supported operating systems.

The operating system and associated software conform to the following standards from the JTA:

(a) ISO 9445-1:1996, Information Technology - Portable Operating System Interface for Computer Environment (POSIX) - Part 1: System Application Program Interface (API) [C Language], as profiled by FIPS 151-2:1994.

(b) IEEE 1003.1g:1996 Draft, POSIX - Part 1: System Application Program Interface (API) Amendment 2: Protocol Independent Interfaces (Sockets) [C Language].

T
F
N/A
1-3
I&RTS 9.1.2
NOTE: Answer true if there is a DII COE Kernel available for the target platform’s operating system.

SRC: Compile source code to execute on one of the DII COE supported operating systems.

Unless approved by the DII COE Chief Engineer, the operating system supports the System API for FIPS 119 (Ada95).

T
F

1-4
I&RTS 8.0
NOTE: Answer true if there is a DII COE Kernel available for the target platform’s operating system. This question should be answered true if the operating systems is able to support DCE but does not necessarily have DCE software installed.

SRC: Compile source code to execute on one of the DII COE supported operating systems.
The operating system is configured to support DCE.

T
F

1-5
JTA 3.2.1.1.2.1.1,

3.2.1.1.2.1.3

3.2.2.1.1
NOTE: Answer true if there is a DII COE Kernel available for the target platform’s operating system.

SRC: Compile source code to execute on one of the DII COE supported operating systems.
The operating system is configured to support TCP/IP protocols.

T
F

1-6
JTA 3.2.1.1.2.1.2
NOTE: Answer true if there is a DII COE Kernel available for the target platform’s operating system.

SRC: Compile source code to execute on one of the DII COE supported operating systems.
The operating system is configured to support UDP protocols.

T
F

1-7
JTA 3.2.2.2.2
NOTE: Answer true if there is a DII COE Kernel available for the target platform’s operating system.

SRC: Compile source code to execute on one of the DII COE supported operating systems.
The operating system is configured to support SLIP and PPP.

T
F

1-8
No Reference Identified
NOTE: Answer true if the target platform does not have any custom device drivers.

DEV: Requires testing to verify that hardware does not prevent DII COE Kernel and other applications from executing successfully.
Custom device drivers added to support program-unique requirements, if any, do not interfere with native capabilities of the operating system nor do they cause a violation of other mandated standards for the operating system or network.

T
F
N/A
1-9
I&RTS Appendix A
NOTE: Answer n/a if target platform is running Unix.

SRC: Compile source code to execute on one of the DII COE supported operating systems.
(NT) The operating system is the same version as provided by the COE, or higher (see Appendix A).

Network Services

T
F

1-10
I&RTS 8.2, 8.3
NOTE: This question should be answered True if the application software is able to coexist with installed and executing DCE software.

SRC: Compile source code to execute on one of the DII COE supported operating systems.
The application can execute in an environment that includes DII COE-provided DCE services.

T
F
N/A
1-11
JTA 3.2.1.1.2.1.1,

3.2.1.1.2.1.3

3.2.2.1.1
NOTE: Answer n/a if TCP/IP services are not required by the software application. Answer false if third party software is required to provide the TCP/IP services.

SRC: May require source modifications to back out application specific TCP/IP interfaces.
The application uses only those TCP/IP interfaces provided by the native operating system.

T
F
N/A
1-12
JTA 3.2.1.1.2.1.2
NOTE: Answer n/a if UDP services are not required by the software application. Answer false if third party software is required to provide the UDP services.
SRC: May require source modifications to back out application specific UDP or point-to-point interfaces.
The application uses only those UDP or point-to-point interfaces provided by the native operating system.

T
F
N/A
1-13
JTA 3.2.2.2.2
NOTES: Answer n/a if SLIP or PPP services are not required by the software application. Answer false if third party software is required to provide the SLIP or PPP services.

SRC: May require source modifications to back out application specific SLIP or PPP interfaces.
The application uses only those SLIP or PPP interfaces provided by the native operating system.

GUI Environment

T
F
N/A
1-14
I&RTS 1.6-9, 2.1.4

DII Style Guide, App H
NOTES: The statement is more precisely defined in the reference, which references other parts of the DII Style Guide. Answer n/a if there is no GUI associated with the application software.

SRC: Changes may require source code change and/or modification of the resource file for the GUI.

DEV: Requires developer to look at the appendix H requirements in the DII User Interface Specification and test the user interface of the segment to see if these requirements are satisfied.
The application complies with the style of the native GUI. (See GUI compliance requirements in the DII User Interface Specification.)

T
F
N/A
1.15
1.6-8
NOTE: Answer true if there is a DII COE Kernel available for the target platform’s operating system.

SRC: Developer may have to modify source code to comply with the referenced standard.
The windowing environment conforms to the following standard from the JTA: ISO 9945-2:1993, Information Technology - Portable Operating System Interface for Computer Environments (POSIX) - Part 2: Shell and Utilities as profiled by FIPS PUB 189:1994.

T
F
N/A
1-16
JTA 2.2.2.1.7
NOTE: Answer n/a if target platform is running Unix.

SRC: Developer may have to modify source code to comply with the referenced standard.
(UNIX) The windowing environment conforms to the following standard from the JTA: FIPS Pub 158-1:1993, User Interface Component of the Application Portability Profile X-Windows Version 11, Release 5.

Database Services

T
F
N/A
1-17
JTA 2.2.2.1.3
NOTE: DBMS products must support these SQL requirements as a minimum. Extensions are allowed. The three DII COE supported DBMS COTS products satisfy this requirement. Answer n/a if the applications software is not an RDBMS.

SRC: May require source code changes depending on whether it contains embedded SQL that is not compliant with FIPS-127-2 SQL (i.e., previous standard does not support the extension provided in 127-2; use of non-standard SQL extensions).

DEV: Use one of the DII COE RDBMS products or segment a new RDBMS product and check with the vendor documentation to verify that FIPS 127-2 SQL is completely supported by the product.
If an RDBMS is used, it supports FIPS-127-2 SQL queries.

A.2 Network Compliance (Level 2)

Question
Reference
 Impact

SEG - Sementation File

SRC - Segemnt Source Code

DEV - Development Process

DOC - Documentation

NOTE - Other notes
Security

T
F
N/A
2-1
I&RTS 2.2.2
DEV: Can be tested by selecting the option to install the native operating system security modules during the operating system installation process and then testing the segmented application on this configuration.
The application is able to operate correctly with the operating system security modules enabled (BSM for Solaris, C2 enabled for HP, etc.).

Operating System

T
F
N/A
2-2
I&RTS

 5.11.10
SRC: Compile source code to execute on one of the DII COE supported operating systems.
The operating system supports NFS servers and clients.

T
F
N/A
2-3
I&RTS

5.5.2.18,

5.11.3
SRC: Compile source code to execute on one of the DII COE supported operating systems.
(Unix) The operating system can be configured to support DNS/NIS/NIS+. (Note: The requirement is that the operating system be capable of supporting centralized management of key resources such as hostnames, user accounts, etc. NIS+ is not a specific requirement because not all vendors support it.)

T
F
N/A
2-4
I&RTS 6.5.1
DEV: Developer must select NTFS option when installing the Windows NT operating system or use the CONVERT command from the DOS prompt to go from FAT to NTFS.
(NT) NT is configured to use the NTFS file system for files stored on hard disks. (Note: NT uses the FAT file system for floppy diskettes. Such usage is generally transparent to applications. However, NTFS is required on the hard disk for security reasons.)

Network Services

T
F
N/A
2-5
I&RTS

 5.5.2.3,

5.10.9
SRC: Compile source code to execute on one of the DII COE supported operating systems.
The operating system supports sockets, including Berkeley sockets.

T
F
N/A
2-6
JTA

3.2.1.1.2.1.2
SRC: Compile source code to execute on one of the DII COE supported operating systems.
The application is able to operate properly in an environment where other applications are performing UDP broadcasts.

T
F
N/A
2-7
I&RTS 5.11.3
SEG: PostInstall may have to prompt for client and/or server IP addresses instead of relying on fixed values.
The application does not require any particular hostname conventions nor does it need reserved IP addresses.

T
F
N/A
2-8
No reference

 identified
SRC: May require source code modifications to make segmented application support both types of LANs.
The ability of the application to execute correctly is independent of the type of LAN (e.g., Class B or Class C) connected to the platform.

T
F
N/A
2-9
I&RTS

5.5.2.18,

5.11.3
DEV: Testing the segmented application on a platform with the DII COE kernel installed will verify this requirement.
(Unix) The application can operate in a DNS/NIS/NIS+ environment. (Note: The requirement is that the application be able to operate correctly when the features supported by the operating system for centralized management of key resources are enabled.)

T
F
N/A
2-10
I&RTS 6.2
SRC: Compile source code to execute on one of the DII COE supported operating systems. May require source code changes if application cannot execute with MS domains and workgroups.
(NT) If the target system is configured to use Microsoft domains and workgroups, the application can operate correctly in such an environment.

T
F
N/A
2-11
I&RTS 6.5.6
SRC: Source code modifications may be required to accommodate PC byte order requirements.
(NT) The application uses native PC byte order for data internal to the PC, but uses network byte order for data external to the PC.

T
F
N/A
2-12
I&RTS 6.5.6
SRC: Source code modifications may be required to accommodate PC byte order requirements.
(NT) The application uses native PC byte order to access $DATA_DIR/local and $DATA_DIR/PCglobal PC data.

T
F
N/A
2-13
I&RTS 6.5.6
SRC: Source code modifications may be required to accommodate PC byte order requirements
(NT) The application uses network byte order to access $DATA_DIR/global data.

GUI Environment

T
F
N/A
2-14
I&RTS

5.10.3, App A
SRC: May require source code changes to use DII COE Kernel provided X server.
(Unix) If the application is an X windows application, it is compatible with the X server supplied by the COE (see Appendix A).

Database Services

T
F
N/A
2-15
No reference

 identified
DEV: Testing the segmented application on a platform with the DII COE RDBMS segment installed will verify this requirement.
Database updates operate correctly with DBMS security audits enabled.

T
F
N/A
2-16
I&RTS 4.2.4
SRC: Database analyst may have to make database changes to accommodate this requirement.
The database is recoverable to a consistent state in the event of DBMS server, network, or client application failure. This includes both hardware and software failures.

T
F
N/A
2-17
I&RTS 4.2.4
SRC: Using a COE segmented DBMS will satisfy this requirement.
Database transactions implement strict two-phase locking.

A.3 Workstation Compliance (Level 3)

Question
Reference
 Impact

SEG - Sementation File

SRC - Segemnt Source Code

DEV - Development Process

DOC - Documentation

NOTE - Other notes
Operating System

T
F
N/A
3-1
I&RTS 5.10.4
SEG: May require a Unix Script file such as .cshrc to be included as part of the segment. This file should define all global environment variables required by the segment that will be established when a user logs into the COE.

DOC: Documentation identifying extensions is recommended.
If extensions to the operating system as configured for the COE are required, all such extensions have been identified and documented. This includes the configuration of all operating system resources including the amount of shared memory required, the number of semaphores, the message queue size, etc.

T
F
N/A
3-2
I&RTS 5.10.4
DEV: The systems programmers of the application must read the I&RTS and determine if the segmented application satisfies the systems programming requirements.
The operating system configuration required by the application does not decrease or conflict with any system resources as already configured for the COE. The application may increase system resource configurations, but not decrease them.

T
F
N/A
3-3
I&RTS 5.10.9
SEG: Ports should be requested via the $SERVICES keyword in the [COEServices] section of the SegInfo descriptor file.

SRC: May have to back port establishment if it is contained in the segment source code or install scripts.
The application does not use hardcoded port assignments (e.g., from /etc/services) and is not sensitive to specific ports other than well-known port assignments (e.g., ftp, listen). If the application uses network resources, including standard services such as ftp and listen as well as its own private services, it retrieves the port number(s) by service name from the /etc/services file.

Network Services

T
F
N/A
3-4
No reference

identified
SRC: Source code modifications may be required to accommodate anonymous FTP.
If the application uses ftp, it can operate in an environment where only anonymous ftp is available.

GUI Environment

T
F
N/A
3-5
I&RTS 5.10.3
SRC: May require source modifications to back out calls to Xlib functions

that may conflict with Motif lower-level X functions called by other applications.

SRC: May require source modifications to back out direct calls to Xlib functions that conflict with the DII COE.
(Unix) The application does not make direct calls to X libraries that conflict with applications that use Motif libraries to access lower-level X functions. For example, the application does not use lower-level X library functions to establish window border style or colors that either conflict or override settings established by Motif.

T
F
N/A
3-6
I&RTS

5.10.3
SRC: May require modifications to ensure that vendor supplied X or Motif files are not altered.

SRC: May require application redesign to accommodate the use of DII COE Kernel provided X and Motif libraries.
(Unix) The application does not alter any files in the vendor-supplied X or Motif directories (e.g., modify rgb.txt or Xdefaults).

T
F
N/A
3-7
I&RTS App A
SRC: May require application redesign to accommodate the use of DII COE Kernel provided X Server and Xdm.

(Unix) The application can use the same X server version and xdm version that is supplied by the COE (see Appendix A).

T
F
N/A
3-8
I&RTS App A
SRC: May require application redesign to accommodate the use of DII COE Kernel provided X and Motif libraries. In addition, the application should be executed on one of the DII COE supported environments to test for possible unsolicited behavior(s). If static link is used, no modifications may be required.
(Unix) The application uses either the same version of Motif as provided by the COE (see Appendix A), or does a static link to Motif libraries so that it does not conflict with other COE-based segments.

T
F
N/A
3-9
I&RTS App A
SRC: Compile source code to execute on one of the DII COE supported operating systems.
(NT) The application uses the same version of NT as supplied by the COE (see Appendix A).

T
F
N/A
3-10
I&RTS 6.5.7
SRC: Application source code may have to recompiled in 32-bit mode.
(NT) Unless a COTS application, the application uses only Win32 APIs to access Windows routines.

Database Services

T
F
N/A
3-11
I&RTS 4.1
SRC: Application source code may require changes if it modifies the RDBMS segment configuration.
The application does not modify the user’s DBMS environment that will be established by the DBMS COE-component segment.

DCE Services

T
F
N/A
3-12
I&RTS 8.1.1
SRC: Application source code may require changes to accommodate DII COE provided DCE capabilities.
If using RPCs, the application is compatible with the RPC mechanisms supported by the DCE version supplied by the COE.

COTS Products

T
F
N/A
3-13
DII COE Baseline Document
SRC: Application source code changes may be required to accommodate COE versions of COTS products.
The software is capable of running in an environment that includes DII COE approved COTS products as specified in the DII COE Baseline Document for the COE version being used.

T
F
N/A
3-14
I&RTS 5.4.1
SRC: May require source changes to use COE provided COTS products without modifications to those COTS products.
Configuration changes made to COTS products, if any, do not render inoperable any features available to COE-based segments or users that are already using the COTS product.

T
F
N/A
3-15
I&RTS 5.4.1
SRC: May require source changes to use COE provided COTS products without modifications to those COTS products.
The application does not require any source code modifications to COTS products.

T
F
N/A
3-16
I&RTS 6.5.7
SRC: May require changes to the source code to change function calls to 32-bit COTS supported APIs.
(NT) If the application is a COTS product that uses 16-bit APIs, there is no 32-bit alternative.

Runtime Environment

T
F
N/A
3-17
I&RTS 2.1.4
SRC: May require source changes to prevent changes to files from other segments.
The application does not alter any files outside its own directory in such a way that it will conflict with COE-based segments.

T
F
N/A
3-18
I&RTS 2.1.4
SRC: May require source changes to use COE provided software without modifications to that software.
The application can operate on a COE-configured workstation without altering the location or version of any system software (Unix, X Windows, Motif, NT, etc.).

Miscellaneous

T
F
N/A
3-19
I&RTS 6.5.7
SRC: May require source code changes to accommodate both VGA and SVGA resolutions.
(NT) The application supports VGA and SVGA resolutions.

T
F
N/A
3-20
I&RTS 6.5.7
SRC: May require source code changes to accommodate all three icon sizes.
(NT) The application supports 16x16, 32x32, and 64x64 icons.

A.4 Bootstrap Compliance (Level 4)

Question
Reference
 Impact

SEG - Sementation File

SRC - Segemnt Source Code

DEV - Development Process

DOC - Documentation

NOTE - Other notes
Security

4-1
I&RTS 5.8.1
SEG: The Parent segment must include the desired level of security for all child segments. This is specified in the [Security] section of the SegInfo descriptor file.
If an aggregate segment, the security level of the parent dominates the security level of the children.

T
F
N/A
4-2
I&RTS 5.8.2
DOC: Documentation must be generated to satisfy this requirement.
Documentation is available with the application that clearly identifies releasability restrictions.

Standards Compliance

4-3
I&RTS 2.1.4-2
SEG: All software must have descriptor files.
DEV: All software must go through the VerifySeg, MakeInstall, etc... process
All software and data are packaged in segment format.

4-4
I&RTS

 2.1.4-4,

C-3.2.2
SEG: Descriptor files have to be created and modified as required to pass VerifySeg with no errors.

DEV: All software must go through the VerifySeg with no errors.
The segment successfully passes VerifySeg with no errors. Warnings are acceptable but the reason fro them must be explained in the IntegNotes file.

4-5
I&RTS 2.1.4
SEG: Run VerifySeg and save output to the “VSOutput” file. Place this file in the segment’s “Integ” directory. Edit file and place a NOTE: for each warning explaining why the warning is acceptable.
The segment uses the same bootstrap COE as provided by the COE, or all extensions required are documented and handled by the segment in such a way that it does not interfere with other segments. For example, community files are not destructively overwritten by the segment because other segments may also need to made alterations to the community file during their own installation.

4-6
I&RTS 2.1.4
DEV: Requires developer to run MakeInstall and then test installation and de-installation of the segment with the DII COE Segment Installer.
The segment can be installed and removed completely through the COE installation tools. If the segment is a “permanent” segment (see Chapter 5) and is not a candidate for removal, the segment has been tested to ensure that upgrades successfully preserve data files that must be retained during upgrades.

T
F
N/A
4-7
I&RTS 6.4
SRC: Installation scripts may have to be modified to remove any changes to the Windows NT configuration files.
(NT) Unless a COTS product, the application does not modify the root-level AUTOEXEC.BAT, CONFIG.SYS, AUTOEXEC.NT, or CONFIG.NT files.

T
F
N/A
4-8
I&RTS 6.4
SRC: Installation scripts may have to be modified to remove any changes to the Windows NT configuration files.
(NT) Unless a COTS product, the application does not modify WINDOWS.INI and SYSTEM.INI files.

Database Services

T
F
N/A
4-9
I&RTS 4.3.4.1, 5.6.3.1
SRC: Database installation scripts may have to modified to use local storage areas over RDBMS public storage areas.
Database owners do not use system storage areas during database creation.

T
F
N/A
4-10
I&RTS 5.6.3.1
SRC: Database installation scripts may have to modified to use local storage areas over RDBMS public storage areas.
The database application does not modify the core database storage areas, create objects in system storage areas, or create objects in public storage areas (e.g., create rollback table space).

COTS Products

T
F
N/A
4-11
DII COE Baseline Document
SRC: May require source changes to use COE provided COTS products without modifications to those COTS products.
The application can use the same COTS configurations as those specified by the applicable DII COE Baseline Document for any COTS product it uses that may also reside on the platform.

Runtime Environment

T
F
N/A
4-12
I&RTS 5.10 and all subparagraphs
SEG: May require development of a Scripts file to include extensions to the operating system.
DOC: May require modifications to application documentation to include extensions to the runtime environment.
Runtime extensions to the COE required by the application have been identified and documented.

4-13
I&RTS 2.1.4
SEG: May require entries into the SegInfo descriptor file to establish runtime extensions.
SRC: May have to modify source code to back out runtime configuration changes made by the application.
The segment uses the same runtime environment configuration as provided by the COE with extensions, if any, made through environment extension files and segment descriptors.

4-14
I&RTS 2.1.2.1

DII COE Baseline Specification
SRC: May require source changes to use COE provided software without modifications to that software.
The segment uses the same versions, configurations, patches, and file locations as provided by the COE for all components of the bootstrap COE.

4-15
I&RTS 5.2 (including sub paragraphs)
SEG: The developer must conform to the directory structure required y the I&RTS.
SRC: May require source code changes to accommodate directory structure required by the I&RTS.
The segment uses the DII COE directory layout or a migration plan to achieve proper directory layout has been prepared.

T
F
N/A
4-16
I&RTS 6.5.1
SRC: May require source code changes so that the segmented application will not crash if it attempts to read a Unicode format filename
(NT) The application is able to handle Unicode filenames.

A.5 Minimal DII Compliance (Level 5)

Question
Reference
 Impact

SEG - Sementation File

SRC - Segemnt Source Code

DEV - Development Process

DOC - Documentation

NOTE - Other notes
Security

5-1
I&RTS 5.8.5
DEV: Developer must request permission via an Email. Request from the DII COE Chief Engineer
For COE-component segments, prior approval has been granted by the DII COE Chief Engineer to provide a command-line mode or feature. The $CMDLINE keyword is used in the Direct segment descriptor to indicate command-line access is provided.

5-2
I&RTS 5.8.5
DEV: Developer must request permission via an Email. Request from the appropriate Chief Engineer for the segment’s applicable system. (i.e. GCSS Chief Engineer, GCCS Chief Engineer).
For mission-application segments, prior approval has been granted by the Chief Engineer to provide a command-line mode or feature. The $CMDLINE keyword is used in the Direct segment descriptor to indicate command-line access is provided.

5-3
I&RTS 5.8.5
DEV: Developer must request permission via an Email. Request from the DII COE Chief Engineer.
For all segments, whether COE-component segments or mission-application segments, prior approval has been granted by the DII COE Chief Engineer to provide a command-line mode or feature that provides “superuser” access. The $CMDLINE and $SUPERUSER keywords are used in the Direct segment descriptor to indicate superuser access.

T
F
N/A
5-4
I&RTS 5.8.5
DEV: Requires application and systems programmers to analyze and test the segmented application. Testing should include a check for undocumented access to command line.
The application does not provide a “back door” access to a command-line prompt. If a command-line mode is available, it is through a known, documented approach for all authorized users and not through some hidden, undocumented approach.

5-5
I&RTS 5.8.6, 5.8.7
DEV: Developer must request permission installation, via an Email, to use privileged permissions during segment. Request from the appropriate Chief Engineer for the segment’s applicable system. (i.e. GCSS Chief Engineer, GCCS Chief Engineer).
If privileged user permissions are required during segment installation or removal (e.g., use of the $ROOT keyword), prior approval has been granted by the Chief Engineer.

T
F
N/A
5-6
I&RTS 5.8.7
SRC: May require modification to source code if system umask is set by application. Setting a runtime session (segment only) umask is acceptable.
(Unix) The application does not alter the COE established umask setting.

Standards Compliance

5-7
I&RTS 2.1.4
DEV: The developer must test the installation of a completed segment on a platform that has the installed DII COE Kernel.
The segment uses the same kernel COE as provided by the COE and documented in the applicable DII COE Baseline Document for the COE version being used.

T
F
N/A
5-8
I&RTS 5.2
SRC: May require changes to filenames, directory names, and references to those file/directory names.
All directory and filenames contain only printable, non-blank, standard ASCII characters.

T
F
N/A
5-9
I&RTS 5.2.2
SEG: Use the SegInfo [COEServices] capability to add user logins to the runtime environment at installation time.

NOTE: The DII COE Installer does not remove this account when the segment is deinstalled.
The segment does not create user login accounts. (This does not restrict applications from creating “non-login” accounts” for use in establishing a segment group id.)

T
F
N/A
5-10
I&RTS 5.2.2
SEG: May be required to use the SegInfo [Direct] commands to run scripts when user accounts are added and removed from the system.

NOTE: The ACCTADD and ACCTDEL commands in SegInfo are not supported by the DII COE yet (through 3.2).
The application can operate in an environment where user accounts are created and deleted at any time by the site administrator responsible for managing user accounts. The application accounts for this and creates and initializes operator preferences the first time the application is activated after a new account is created.

T
F
N/A
5-11
I&RTS 5.2
SEG: The developer needs to reference files and directories using the “INSTALL_DIR” environment variable when developing all installation scripts. The developer needs to use the “COEUpdateHome” runtime tool along with a segment specific .cshrc file to handle relative references to executable files at runtime.
The segment loads correctly into the directory assigned by the COE installation tools. It does not require being loaded in any specific directory, or the Chief Engineer has granted a waiver. (This requirement does not apply to COTS segments.)

5-12
I&RTS 3.1 and all it’s subparagraphs
SEG: The format for segment version numbers is described in paragraph 3.1.1 of the I&RTS. It consists of an a.b.c.d designation. The a, b, and c are controlled by the Chief Engineer for the system and the DII COE Chief Engineer for COE Components. The d is controlled by the developer. Do not use a ‘0’ for a. The version number must be identified in the VERSION descriptor file.

DOC: The documentation delivered with the segment must identify the same version number as the one specified in the VERSION descriptor file.
The segment conforms to the COE version numbering scheme.

T
F
N/A
5-13
I&RTS 5.4.3
SRC: The segment cannot put files in operating system directories such as Program Files in NT and /user/opt on unix. Developer may have to move files and directories. Links in Unix are acceptable.
The application does not move directories or files from the application’s home directory into other directories. This requirement does not apply to COTS, nor does it apply to data files.

5-14
I&RTS 6.3
SRC: The DII COE Segment Installer will create the necessary root key for the segment. If the segment is establishing subkeys, they will have to reside under the root key. If not the source code will have to be modified.
 (NT) The segment creates all its subkeys underneath SegType\SegDirName where SegType is Account Groups, COE, COTS, Patches, Data, or Software, and SegDirName is the segment's directory name.

T
F
N/A
5-15
I&RTS 6.3
SRC: The DII COE Segment Installer will create the necessary root key for the segment. If the segment is establishing root keys itself, the source code will have to be modified.
(NT) Unless a COTS application, the application does not create any root keys.

5-16
I&RTS 6.3
SRC: The DII COE Segment Installer will create the necessary root key for the segment. If the segment is establishing subkeys, the source code will have to be modified to put the segment prefix into the subkey name.
(NT) All segment subkeys are named with the segment prefix.

T
F
N/A
5-17
I&RTS 6.5.1, 6.5.6
SRC: The segment shall support UNC file names to access network shared drives and directories. It can also utilize the WinNet APIS to determine if a pathname is a network pathname.
(NT) The application supports UNC filenames.

Operating System

T
F
N/A
5-18
I&RTS 5.5.2.3
SRC: If the segment source is using port numbers which are reserved for COE component segments or renaming the well defined ports like ftp, listen the source code has to be modified.

SEG: Ports should be requested via the $SERVICES key word in the [COEServices] section of the SegInfo descriptor file:

DOC: The documentation must indicate the port numbers and names usage.
The application does not rename well defined ports (e.g., ftp, listen), or declare new port names which have the same port number as well-defined ports in the Unix /etc/services file, or the NT equivalent of this file.

5-19
I&RTS 5.5.3
SEG: Ports should be requested via the $SERVICES key word in the [COEServices] section of the SegInfo descriptor file:

DOC: The documentation must indicate the port numbers and names usage.
If ports are required, the quantity has been identified and documented in the COEServices segment descriptor.

GUI Environment

T
F
N/A
5-20
I&RTS 2.1.4, 5.9.3
SRC: The segment development must be compliant with the DII COE UI guide Version 3.0. In some cases it may require a source code change. For special situations a waiver can be stipulated.

DOC: If a waiver requisition has been made the documentation must indicate its status.
The application is fully compliant with the style of the native GUI (see compliance requirements in the DII User Interface Specification).

5-21
I&RTS 5.9.3
SRC: The source code shall be able to execute on the DII COE supported window manager.
The segment uses the window manager provided by the COE (dtwm
 for Unix, Windows NT for NT platforms).

T
F
N/A
5-22
I&RTS 5.9.3
SEG: A segment can define additional fonts and resource files within the data directory of a segment with appropriate segment prefix for file names and variables. The run time environment of COE will check the data directory.
(Unix) The application is compatible with the XFONTSDIR, XAPPLRESDIR, and XENVIRONMENT settings established by the COE. An application may change the settings of these environment variables as long as they are in effect only for the application’s local environment and do not affect the global environment.

Database Services

T
F
N/A
5-23
I&RTS 4.2.7
SEG: The key word $TYPE indicates segment type within the SegName descriptor file through “SOFTWARE” or “DATABASE”. The application segment uses a database segment to access data through shared server.
Application components are separate from their corresponding database components.

T
F
N/A
5-24
I&RTS 4.2.7
SEG: The application segment shall be able to execute from any client based system with in the DII COE environment.
Application components that access databases operate correctly from any COE-compliant workstation and are not required to be installed on a database server.

T
F
N/A
5-25
I&RTS 4.2.8
SEG: The segment source code is not tied to a particular server. The environment variable(s) shall reconfigure.
DB Applications are not tied to a particular server name (i.e., The application does not hardcode a server name.)

T
F
N/A
5-26
I&RTS

4.3.1.2
 TBD

All the database questionnaire impacts will be supplied at a later date
The DB application installation revokes the owner account’s DBMS login privilege upon successful completion of database installation so that no owner accounts can be used to connect to the database.

T
F
N/A
5-27
I&RTS

4.3.1.2
TBD

All the database questionnaire impacts will be supplied at a later date
Owner accounts are not used to connect to databases except during DB application installation.

T
F
N/A
5-28
I&RTS

4.3.1.2
TBD

All the database questionnaire impacts will be supplied at a later date
Database owner accounts do not have database administrator privileges.

T
F
N/A
5-29
I&RTS 4.2.1
TBD

All the database questionnaire impacts will be supplied at a later date
Separate segments are provided that create required database dependencies. These segments are executed by the owning database(s).

T
F
N/A
5-30
I&RTS

 4.3.1.2
TBD

All the database questionnaire impacts will be supplied at a later date
The DB application installation requires the owner account password to be changed upon completion.

T
F
N/A
5-31
I&RTS

5.6.3.1
TBD

All the database questionnaire impacts will be supplied at a later date
DB applications do not modify the core DBMS instance’s configuration.

T
F
N/A
5-32
I&RTS 5.4.5,

5.6.3.1
TBD

All the database questionnaire impacts will be supplied at a later date
The DB application does not assume any particular disk configuration when creating data files.

T
F
N/A
5-33
I&RTS

5.8.1.3
TBD

All the database questionnaire impacts will be supplied at a later date
Any modified versions of DBMS COE tools reside with the application’s client.

T
F
N/A
5-34
I&RTS 5.4.5
TBD

All the database questionnaire impacts will be supplied at a later date
Scripts are provided for the DBA’s use to add, modify, and remove user privileges.

T
F
N/A
5-35
I&RTS

4.3.7.2
TBD

All the database questionnaire impacts will be supplied at a later date
The DB application does not modify another segment’s application database schema.

T
F
N/A
5-36
I&RTS 4.3.6
TBD

All the database questionnaire impacts will be supplied at a later date
Grants are not made to public or general-purpose users (e.g. Oracle’s PUBLIC user).

T
F
N/A
5-37
I&RTS

4.3.1.1,

4.3.1.2
TBD

All the database questionnaire impacts will be supplied at a later date
Only the owner and the DBA are able to administer grants.

T
F
N/A
5-38
I&RTS 4.2.1,

 5.4.5
TBD

All the database questionnaire impacts will be supplied at a later date
Operations that set or redirect the user’s DBMS environment variables take place only within the application’s execution space.

T
F
N/A
5-39
I&RTS

4.3.4.5
TBD

All the database questionnaire impacts will be supplied at a later date
No indices are created on another database’s tables.

T
F
N/A
5-40
I&RTS 4.3.6
TBD

All the database questionnaire impacts will be supplied at a later date
Application-level permissions are not granted to DBA accounts or to database roles used for DBMS administration.

T
F
N/A
5-41
I&RTS 5.4.5

TBD

All the database questionnaire impacts will be supplied at a later date
Database applications are identified as unique or sharable according to their potential for sharing.

Web Services

5-42
I&RTS 7.1.2
SRC: Redefine the hard coded paths using the environment variables pointing to the corresponding (segment) data directory.

DEV: Load the files in the /h/data/local/SegDir/pub directory.
The segment’s HTML files are in the segment’s $DATA_DIR/local/SegDir/pub directory.

T
F
N/A
5-43
I&RTS 7.3.1, 7.5
SRC: If the legacy systems were not developed based on the DII user style guide may require minor source code medications.
The application supports HTML 3.2 and complies with style specifications (see the DII User Interface Specification) for Web applications.

T
F
N/A
5-44
I&RTS 7.3.1
SRC: The application may require modification to run with all parts of HTML 3.2 specification.
The application provides a notification to “disadvantaged” users if they are using a browser that does not support the features provided by the application.

Runtime Environment

5-45
I&RTS 2.1.4
SEG: Define the [Icons] descriptor information within the SegInfo file.
The segment is launched from the same desktop provided with the COE.

T
F
N/A
5-46
I&RTS 2.1.4
DEV: Developer must request the DII COE kernel, and segmentation tool kit tape (s) through the corresponding service agency.
The desktop is configured in accordance with the DII User Interface Specification.

T
F
N/A
5-47
I&RTS 5.2
SRC: If hard coded names are used within application a minor change(s) is required by setting up the environmental variables.
The application uses relative pathnames for files within the application.

T
F
N/A
5-48
I&RTS 5.2
SRC: Source code change may require to configure with relative path names.
The application does not use the “~” character, for Unix or its NT equivalent, for referencing pathnames in environment extension files which become a part of the global runtime environment.

T
F
N/A
5-49
I&RTS 5.3
SRC: Source code change may require if reserved symbols are being altered.

DEV: Can request for a waiver on special situations through the service agency.
The application does not use any reserved symbols as its own from the I&RTS Chapter 5.

T
F
N/A
5-50
I&RTS 5.2
SRC: Source code change may require to back out any environment variable setup/changes.

SEG: Setup the environment variables or extensions using the cshrc extensions (“.cshrc. SAopt” or “.login.SAopt” where “SAopt” indicates segment prefix) which will be included automatically by the COE at the segment installation time.
The application does not override or alter any environment variable that it doesn’t create.

T
F
N/A
5-51
I&RTS 9.3
SRC: Source code change may require to include the concept of separation from development to runtime.

SEG: Define the development extensions using “.dev” form (“.cshrc.dev”)
The application completely separates the development environment from the runtime environment, and no development environment tools, scripts, or other executables are required at runtime.

5-52
I&RTS 5.4.3
SRC: Source code change may require to comply with the current global configuration (/h/data/global).

SEG: Setup the global data segment using the descriptor files.
The segment uses the same global runtime environment configuration as provided by the COE, with extensions, if any, made through the appropriate environment extension files and segment descriptors.

5-53
I&RTS 5.5.3
SRC: Source code change may require to use the current assigned ports, RPC address and UID’s.

SEG: Setup ports using $SERVIVES descriptor with in the SegInfo file.

DEV: Waiver is required to use these services.
The segment only listens on assigned ports, only registers assigned RPC addresses, and only adds assigned system UIDs (Unix).

5-54
I&RTS 5.2
SRC: Source code change may require to link with proper directories.

SEG: Define the home environment variable using [ReqrdScripts] descriptor in the SegInfo with “.chsrc” extension.
The segment home environment variable points to the segment’s home directory. The name of the environment variable is segprefix_HOME where segprefix is the segment’s assigned prefix.

5-55
I&RTS 5.2
SRC: Source code change may require to link with the respective directories.

SEG: Define the home environment variable using [ReqrdScripts] descriptor in the SegInfo with “.chsrc” extension.
(UNIX) The segment uses environment extension files to add no more than one “home” environment variable to the affected account group. (This then becomes part of the “global” execution environment. It is preferable that the segment use only “local” home environment variables, if any).

COE-Component Segments

5-56
I&RTS 5.4.8
SEG: Define the TYPE as COE in the SegName descriptor file.

DEV: DII COE Chief Engineer approval is required.
The segment has been authorized as a COE-component segment by the DII COE Chief Engineer.

5-57
I&RTS 5.5.29
SEG: Define the depend segments using descriptor [Requires] in the SegInfo file.

DEV: Before installing this COE segment all the dependency segments are loaded or available.
Segments in the kernel COE fully specify dependencies upon the components in the bootstrap COE. This is done through the Requires segment descriptor.

5-58
I&RTS 5.3
SRC: Source code change may require to link with the respective directories.

SEG: The environment variables will be set by COE. Additional extenstions can be made using [ReqrdScripts] descriptor in the SegInfo file.
If a parent COE-component segment, the following environment variables (as appropriate for a Unix versus NT environment) are automatically defined as specified by this document: DATA_DIR, LD_LIBRARY_PATH, LOGNAME, LOGIN_NAME, MACHINE_CPU, MACHINE_OS, path, TMPDIR, TZ, XAPPLRESDIR, XFONTSDIR, XENVIRONMENT.

T
F
N/A
5-59
I&RTS 5.4.8
DEV: The COE child segment can’t alter the path variable. It must have authorization key

SEG: Extended environment variables can be defined under the COE component except path variable redefinition.
If the application is to be segmented as a COE child segment, the application does not alter the Unix path environment variable.

5-60
I&RTS 5.4.8
SRC: Source code may require a change to include symbols with segment prefixes.

SEG: Symbols and filenames must have segment prefix with in the segment.

DEV: Waiver is required for exceptions.
All executables and other public symbols use the segment prefix unless otherwise approved by the DII COE Chief Engineer. (Certain legacy segments may be “grandfathered” by the DII COE Chief Engineer.)

Account Groups

5-61
I&RTS 5.4.2
SEG: Define the segment type as “ACCOUNT GROUP” with in SegName descriptor file.

DEV: Permission is required to create a account group.

DOC: Indicate this account group is part of COE.
If the account group is part of the COE, prior approval has been received from the DII COE Chief Engineer to create an account group segment.

5-62
I&RTS 5.4.2
SEG: Define the segment type as “ACCOUNT GROUP” with in SegName descriptor file.

DEV: Permission is required to create a account group.

DOC: Indicate this account group is part of a particular mission application.
If the account group is a mission-application segment, prior approval has been received from the Chief Engineer to create an account group segment.

5-63
I&RTS 5.4.2
SEG: COE environment variables will be included automatically at the installation time.
The environment settings from /h/COE/Scripts are automatically included in the runtime environment of the account group being created. (In Unix this may be accomplished by “sourcing” /h/COE/Scripts/.cshrc.COE.)

5-64
I&RTS 5.4.2
SEG: The account groups segment must have Runsegprefix file to initiate the execution of the account group's application. For example in the case of sysadmin account “RunSA” shall prevail in the scripts directory where “SA” is the prefix for the sysadmin account group.
The segment provides an executable in the Scripts subdirectory, named Runsegprefix where segprefix is the segment prefix, to initiate execution of the account group’s applications.

5-65
I&RTS 5.3,

 Table 5.2
SRC: Source code may require a change to comply with the new environment variables.
The following environment variables, as appropriate for NT versus Unix, are defined: COE_SYS_NAME, DISPLAY, HOME, path, SHELL, TERM, USER, USER_HOME, USER_DATA, USER_PROFILE.

5-66
I&RTS 5.4.2
SEG: Extension of environment variables can be included through [ReqrdScripts] descriptor in the SegInfo file.

SRC: Source code may require a change to comply with the new variables.
(Unix) The segment provides files of the form filename.segprefix for all environment files that segments may reference or extend through the ReqrdScripts descriptor.

5-67
I&RTS 6.3
SRC: Code changes may require if registry level items are in use.
(NT) The application establishes any required global environment settings in the registry.

Aggregate Segments

5-68
I&RTS 5.5.29
SEG: The SegInfo [Requires] section must not include references to a parent’s child segments.

If a parent segment, the segment does not specify a dependency on any of its child segments.

5-69
I&RTS 5.4.7
SEG: The SegInfo [Requires] section must not include references to a parent segment or child segment. A $LOADCOND descriptor can be used to indicate load this child segment if it is not already on the disk or is a new version.
If a child segment, the segment does not specify a dependency on its parent segment nor any other children in the aggregate.

5-70
I&RTS 5.4.7
SEG: Indicate the attributes with PARENT and AGGREGATE for only one segment using the descriptor TYPE with in the SegName file.
Only one segment in the aggregate is designated as the parent.

Segment Descriptors

5-71
I&RTS 5.5
SEG: The SegInfo contains segment descriptor information.
The segment uses SegInfo or individual segment descriptor files, but not both.

5-72
5.5.72, 5.9.6
SEG: Describe the background process under [PROCESS] descriptor within SegInfo file. For background process $KEY must be defined.

DEV: A prior permission is required from the Chief Engineer.
The segment describes all background processes, if any, through the Processes descriptor.

5-73
I&RTS 2.1.4,

5.5.7, 5.5.29
SEG: Segment dependencies must be defined using [Requires] descriptor in the SegInfo file except for the kernel and COE segments.

SRC: Code modification may require with API’s.
All segment dependencies and conflicts are fully declared through the appropriate descriptor. (Mission-application segments need not specify dependencies on segments contained in the kernel COE unless they are version sensitive. COE-component segments need not specify dependencies on the kernel COE unless they are sensitive to version changes in the kernel COE.)

T
F
N/A
5-74
I&RTS 5.5,

5.5.15
SEG: Define the memory and disk space sizes in kilobytes under [Hardware] descriptor category within the SegInfo file.
Memory and disk space requirements are fully and accurately known.

5-75
I&RTS 5.5.11
SEG: Define a DEINSTALL file to remove the segment using COE de-installation process. Include additional procedures to remove any external files generated by the segment.

DOC: Indicate if any external files are generated by the segment.
If not a permanent segment, the DEINSTALL script and Comm.deinstall descriptor have been fully tested to ensure they correctly make the changes indicated and completely restore the system to the state it was in prior to loading the segment.

5-76
I&RTS 5.5.4,

5.5.5
SEG: Define [Comm.deinstall] descriptor within the SegInfo file to be used at run time. Don’t destroy the original settings inadvertently.
The segment Community and Comm.deinstall (if applicable) descriptors have been fully tested to ensure that they correctly makes the changes indicated, and that they do not inadvertently destroy settings that may have been made by another segment.

5-77
I&RTS 5.5.28
SEG: Don’t include more than 32 script file names under the [ReqrdScipts] descriptor category for all environment variables extension within the SegInfo file. Make sure the filenames don’t exceed to 32 characters in length.
The ReqrdScripts descriptor contains no more than 32 script names and no script name is longer than 32 characters.

T
F
N/A
5-78
I&RTS

 3.2.1.2, 5.6.1
SEG: Don’t include “mv” statements in the PreInstall and PostInstall, and DEINSTALL files for moving files across different partitions.
(Unix) The PostInstall, PreInstall, and DEINSTALL scripts have been checked and verified to not do a Unix mv across file partitions.

T
F
N/A
5-79
I&RTS 6.7
SEG: Describe the background process under [PROCESS] descriptor within SegInfo file. Current version doesn’t support.
(NT) Unless a COTS segment, the segment uses the Processes descriptor to create boot time processes. It does not set the Run or RunOnce keys underneath CurrentVersion.

T
F
N/A
5-80
I&RTS 6.6
SEG: Define the executables with extension “exe” , and batch files with “bat”. Rename the files using dos mode.
(NT) The application’s executable descriptors use the .EXE extension for compiled executables and .BAT for batch files.

T
F
N/A
5-81
I&RTS 6.7
SEG: The SegInfo contains segment descriptor information.
(NT) The segment uses SegInfo and not individual segment descriptor files.

Process Compliance

T
F
N/A
5-82
I&RTS 3.2.1.1, Appendix E
DEV: Register the segment with Software Support Activity (DCTF).
The segment has been registered with the SSA.

T
F
N/A
5-83
I&RTS

5.5.2.20,

5.10.6
DEV: Get approval for background, boot, RunOnce, and periodic process from DOD Chief Engineer.

SEG: Describe the background, boot, RunOnce, and process under [PROCESS] descriptor within SegInfo file. For background process $KEY must be defined.
All background, boot, RunOnce, and periodic processes have been identified.

T
F
N/A
5-84
I&RTS 3.2.1.1, Appendix E
DEV: Register the segment with Software Support Activity (SSA) .ie. DCTF for GCSS.

DOC: Supply the system resources information to the DCTF at the time of registration.
System resources required by the segment have been identified.

T
F
N/A
5-85
I&RTS 5.3
SEG: Use the same prefix for a segment which was supplied at the time registration to the DCTF.

DOC: Supply the segment information to the DCTF at the time of registration.
The segment prefix being used is the prefix assigned at segment registration time.

T
F
N/A
5-86
I&RTS 5.5.3,

5.9.9, 8.1.1
SEG: Use the same ports, UIDs, RPC addresses for a segment which was supplied to the DCTF at the time registration.

DOC: Supply the segment information to the DCTF at the time of registration.
The ports, UIDs (Unix), and RPC addresses being used have been identified.

T
F
N/A
5-87
I&RTS

 Appendix A
SEG: Indicate the platform and operating system in the SegInfo file under [Hardware] descriptor.

DOC: Supply the platform, and OS information to the DCTF at the time of registration.
The platforms and operating systems on which the application can run have been identified and documented in a Version Description Document, or its equivalent.

T
F
N/A
5-88
I&RTS 5.5.29
DOC: Supply the COTS products and version information to the DCTF at the time of registration.

SEG: Generate COTS segments for all those products.
All COTS products required, including the required version, are documented in the Version Description Document or its equivalent.

5-89
I&RTS 5.11.7
DOC: Provide COTS products licenses to the DCTF at the time of predelivery for testing.
All required licenses are provided to the SSA with the application, or negotiations have been made with the SSA to use licenses procured by the SSA.

T
F
N/A
5-90
I&RTS 5.5.29
SEG: Define the dependencies using [Requires] descriptor in the SegInfo file.

DOC: Indicate the dependencies in the VDD document.
Application dependencies are noted in the Version Description Document or its equivalent.

5-91

DOC: Submit the segment including VDD to the DCTF for approval.
The Version Description Document, or its equivalent, has been submitted with the segment to the SSA.

T
F
N/A
5-92
I&RTS 10.2
DEV: After the segment has been approved it can be included in the software repository to distribute as required. The repository will be maintained by SDMS and COE Information Server (CINFO).
The segment has been submitted to and accepted for inclusion in the SSA’s online library.

T
F
N/A
5-93
I&RTS 5.5.36
SEG: Indicate the current version in the VERSION descriptor file in the form of a.b.c.d where a, b, c, d indicates major, minor, maintenance, and developer release numbers respectively.

The VERSION descriptor has been updated from the previous release in accordance with the requirements specified in Chapter 5. (This does not apply to the initial release of the segment.)

T
F
N/A
5-94
I&RTS 5.2.1
SEG: Verify the segment using -v and -p options and pipe the output to the Vsoutput file in the segment Integ directory.

DOC: Explain all the warnings in the document at the segment submission time to the DCTF.
The segment is submitted with an annotated output from VerifySeg. All warnings are explained in full in VSOutput.

5-95
I&RTS 5.2.1
SEG: Create IntgNotes in the segment Integ directory before you execute VerifySeg, MakeInstall commands and include the instructions as indicated below.

DOC: IntgNotes is required for all segments submitted to the DCTF. It should indicate a brief description of segment, why it is being submitted (new features, bug fixes etc.), and special instructions that to be communicated to the integrator for installation and integration.
The segment is submitted with a set of integration notes (IntgNotes) as described in Chapter 5.

5-96
I&RTS 3.2.1.2
SEG: Install the segment using the DII COE Installer and verify the operational procedures. Deinstall the segment and verify that no files are left over which were created by this segment.

DOC: Prepare all the required documents and software which was agreed at the segment registration time.
The segment has been loaded and tested in the COE environment prior to submission to the SSA.

5-97
I&RTS 3.2.1.2
SEG: During segmentation only TestInstall is not enough, use MakeInstall and generate the segment on tape or on a hard disk (network drive). Install and deinstall the segment few times and make sure that mission application is working properly and all created files are removed from the system after deinstallation.
Segment installation has been tested through the same installation tools used by site operators. (TestInstall alone does not satisfy this requirement. The COEInstaller tool must be used to load and remove the segment.)

5-98
I&RTS 2.1.4
SEG: Install and deinstall the segment few times and make sure that mission application is working appropriately. Check the segment can be removed successfully including any segment created files after executing the deinstallation process.
If removable, the segment has been tested and confirmed that it can be successfully removed from the system.

5-99
I&RTS 5.2.1,

5.5.22

SEG: If any special installation procedure is required include them in the PostInstall, ReleaseNotes, and IntegNotes files.

If special installation/integration procedures/problems exist, then they are incorporated into the PostInstall (or other) descriptors as appropriate, and documented in the IntgNotes descriptor file.

T
F
N/A
5-100
I&RTS 6.3
SEG: The segment installer handles registration of “uninstall” information for segments. But some COTS segments they handle themselves. In those cases segment must handle by defining keyword $USES_UNINSTALL under [Direct] descriptor within the SegInfo file.

DEV: To use the above keyword Chief Engineer permission is required.
(NT) Unless a COTS application, the application does not register "uninstall" information in the registry (e.g., subkey CurrentVersion\Uninstall).

5-101
I&RTS 6.3
SEG: Define the key word $USES_UNINSTALL under [Direct] descriptor within the SegInfo file to indicate for the segment installer the segment is itself handling uninstall registration.

DEV: To use the above keyword Chief Engineer permission is required.
(NT) If an approved segment registers “uninstall” information in the registry, the $USES_UNINSTALL keyword is declared in the segment’s Direct descriptor.

Miscellaneous

T
F
N/A
5-102
I&RTS 5.2.2
SEG: Create the log files using either scripts or from the application level. Allow these files to update message logs dynamically.

SRC: May require code changes.
The application creates and initializes dynamic data files that are updated as the system executes (e.g., message logs, operator preferences). If an expected file is missing, the application generates a runtime error message and gracefully terminates with an appropriate message to the operator.

5-103
I&RTS 5.4.6
SEG: Create the patch segment under /h/DEV by post fixing segment name for the patch number (eg: segmentname .p1). Generate SegDescrip directory under “segmentname.p1” whcih must exist. Other directories like Scripts, bin, data are optional. In the above scenario when a patch segment is installed it will be loaded as “p1” under “segmentname.patches”
If a patch segment, it follows the patch segment naming convention.

T
F
N/A
5-104
I&RTS 2.1.4
SRC: The are cases when some configuration files of COTS products will have to modified. These modification must be done without impacting the ability of other segments to use that same COTS product on that same platform. One example would be Oracle’s TNSnames file. This file must include IP addresses of DB server platforms being accessed by a client of Oracle. Presently, a waiver must be sought to allow this modification.
The application does not alter any files outside its own directory with the following exceptions: (a) the application is creating temporary files or directories in directories established for temporary storage; or (b) the application is modifying files created for it by the operating system.

T
F
N/A
5-105
I&RTS 5.4.3
SRC: Links are allowed. The installation scripts may have to modified to delete copies and/or moves on files outside the segment directory structure.
The application does not create copies of executables from other applications.

5-106
I&RTS 5.4.11
SEG: The SegInfo files need to be checked on each segment to see they have circular references under the [Requires] section.
The segment does not contain any circular dependencies (e.g., Seg A depends on Seg B, Seg B depends on Seg C, Seg C depends on Seg A is not allowed).

5-107
I&RTS 5.5.11
SEG: The DEINSTALL file needs to be checked on each segment to see they commands to delete directories and files inside of the segment directory and the segment directory itself.

The segment does not delete itself via the DEINSTALL descriptor, nor perform any other operations that are handled by the COE installation tools (e.g., undo changes made to community files).

A.6 Intermediate DII Compliance (Level 6)

Question
Reference
 Impact

SEG - Sementation File

SRC - Segemnt Source Code

DEV - Development Process

DOC - Documentation

NOTE - Other notes
Security

6-1
I&RTS 5.8.8
SEG: The developer must conform to the directory structure required by the I&RTS.
DEV: Check to see if any directories have rwx permission for owner group and world.
The segment satisfies at least one of the following two requirements: (1) The segment contains only subdirectories directly underneath the segment’s home directory. All files are at least one level down from the segment’s home directory. (2) The segment has no directories or files that have the equivalent of the Unix 777 file permissions.

T
F
N/A
6-2
I&RTS 5.8.1, 5.8.2
SEG: Separate segment directories and descriptor files may have to be created.
If the data for a particular application contains any classified entries, then all of its data is packaged in a separate data component and classified accordingly.

T
F
N/A
6-3
I&RTS 5.8.1
SEG: Separate segment directories and descriptor files may have to be created.
Classified applications are packaged separately from unclassified applications, or from applications which are classified at a lower level.

T
F
N/A
6-4
I&RTS 5.8.5
SRC: May require source changes if testing shows application can inadvertently place operator at a command line.
Termination of application execution, whether premature, inadvertent, or intentional does not place the operator at a command-line prompt.

6-5
I&RTS 5.8.6
DEV: Requires developer to obtain a waiver/authorization from the applicable system’s Chief Engineer to use this feature.
The Chief Engineer has authorized privileged processes in the segment. The $PRIVPROC keyword is stated in the Direct segment descriptor, and the privileged processes are listed in the Processes segment descriptor.

T
F
N/A
6-6
I&RTS 5.8.6
SEG: Use the SegInfo [Direct] section to use the $ROOT keyword for running install and de-install scripts with root privilege.
SRC: May require shell scripts that use SUID or SGID to access root.
(Unix) The application does not contain any shell scripts that SUID or SGID to root.

Standards Compliance

T
F
N/A
6-7
I&RTS 2.1.4
SRC: May require source code changes to satisfy DII User Interface Specification requirements.
The application is either completely compliant with the DII User Interface Specification or has minimal deviations.

T
F
N/A
6-8
I&RTS 5.5.15, 9.1
SRC: May require source code changes to eliminate any source code dependencies on specific hardware platforms or UNIX operating systems.
The application is available on all COE-supported platforms unless otherwise approved by the Chief Engineer.

6-9
I&RTS 2.1.4, 5.5
SEG: May have to use the Append, delete, Replace String, Comment and Uncomment commands that are part of the [Community] and [Comm.Deinstall] sections of the SegInfo descriptor file.
The segment does not alter any community files except through COE segment descriptors or published APIs.

6-10
I&RTS 5.2, 5.2.1, 5.2.2
SRC: Source code modifications may be required to accommodate the I&RTS specified segment directory structure.
The segment does not use directories with different names than specified in Chapter 5 to fulfill the purpose of Scripts, bin, data, etc. (progs and libs are acceptable for this level for as long as the COE tools support them.)

T
F
N/A
6-11
I&RTS 9.1.3
SEG: The segment must contain the “include” and “lib” directories. In unix, the segment must also include man page files for each API in a segment “man” directory. On NT, the segment must include help files in a segment “help” directory.
If the application contains APIs written in C, the header files for the public APIs are ANSI-C-compliant and use function prototypes, and the header files are constructed to support C++ calling routines as described in Chapter 9.

T
F
N/A
6-12
I&RTS 9.1
SEG: The segment must contain the “include” and “lib” directories. In unix, the segment must also include man page files for each API in a segment “man” directory. On NT, the segment must include help files in a segment “help” directory.
Specification files for Ada are included for all APIs.

6-13
I&RTS 6.1
SEG: May require files to be moved to the segment’s “data/INI” directory.
SRC: May require source code changes to reference INI files in the required segment directory.
(NT) All INI files used that are local to the segment are stored in the segment's data/INI subdirectory.

T
F
N/A
6-14
I&RTS 6.5.1
SRC: May require source code changes to accommodate the reading of long filenames.
(NT) The application supports long filenames.

6-15
I&RTS 6.1, 6.7
SRC: May require files to renamed and also for source code referencing those renamed files to be modified.
(NT) The segment uses filename extensions in accordance with standard Windows usage (TXT for ASCII files, DLL for dynamic link libraries, etc.).

GUI Environment

T
F
N/A
6-16
I&RTS 5.10.3
SEG: Make sure the segment scripts don’t alter Motif files.
(Unix) The application does not alter any X or Motif supplied files (e.g., Xdefaults, rgb.txt).

Database Services

T
F
N/A
6-17
I&RTS Appendix F
TBD

All the database questionnaire impacts will be supplied at a later date
Neither Informix nor Oracle Public Synonyms are used.

T
F
N/A
6-18
I&RTS 4.3.1.3
TBD

All the database questionnaire impacts will be supplied at a later date
Database applications do not create user accounts, except for a database services account.

T
F
N/A
6-19
I&RTS 4.3.6
TBD

All the database questionnaire impacts will be supplied at a later date
Grants are made to database roles/groups, not user accounts or general-purpose users (e.g., Oracle’s PUBLIC user).

T
F
N/A
6-20
I&RTS 4.3.1.3
TBD

All the database questionnaire impacts will be supplied at a later date
The application does not assume the existence of any particular user.

T
F
N/A
6-21
I&RTS 4.3.4.2
TBD

All the database questionnaire impacts will be supplied at a later date
Data elements do not use machine-dependent data types.

T
F
N/A
6-22
I&RTS 5.8.2
TBD

All the database questionnaire impacts will be supplied at a later date
The database application does not create data objects in other databases except through documented inter-database dependencies (e.g., triggers) and published APIs.

T
F
N/A
6-23
I&RTS 5.8.2
TBD

All the database questionnaire impacts will be supplied at a later date
External object dependencies are known.

6-24
I&RTS 5.8.1, 5.8.2

The segment uses only the DBMS provided by the COE, or has an approved migration plan.

T
F
N/A
6-25
I&RTS 2.1.6
TBD

All the database questionnaire impacts will be supplied at a later date
The application either implements DOD 8320 data standards, or has an approved plan for doing so. (The migration plan must be coordinated with the DII COE Chief Engineer for any data fields that are part of Universal or Shared data segments. Data fields that are part of a Unique data segment do not require DII COE Chief Engineer approval.)

6-26
I&RTS 4.3.5
TBD

All the database questionnaire impacts will be supplied at a later date
Database roles that span multiple database segments are defined in their own segments.

T
F
N/A
6-27
I&RTS 4.3
TBD

All the database questionnaire impacts will be supplied at a later date
Data objects and elements follow naming conventions specified in Chapter 4 of the I&RTS.

T
F
N/A
6-28
I&RTS 4.3.4
TBD

All the database questionnaire impacts will be supplied at a later date
Definitions for schema components are provided in the DBMS data dictionary.

Web Services

6-29
I&RTS 7.1.1.1
SEG: Make sure to use the Web server which is provided by the DII COE. There may be exceptions but support may be minimal or unavailable.
The segment uses the Web server provided by the COE rather than bringing along its own Web server.

COTS Products

6-30
I&RTS 5.4
SEG: Make separate segments for all the COTS packages. On NT abbreviated segmentation can be done with a minimal effort.
All COTS products are packaged as separate, individual COTS segments.

T
F
N/A
6-31
I&RTS 5.4.1
SEG: Create a PostInstall file in the segment directory to display a COE error message. This PostInstall file could be empty unless other setups are required.
The installation script ensures that there is enough space in the directories where the COTS product will be installed and reports an error message if not.

6-32
I&RTS 5.4.1, 5.5.14
SEG: Define all COTS product files in the [FilesList] descriptor of Seginfo file.
The FilesList descriptor has been validated as correctly documenting what files and directories constitute the COTS product. This does not apply to COTS products in the bootstrap COE.

Runtime Environment

T
F
N/A
6-33
I&RTS 5.2
SEG: Remove all temporary files created by the segment through DEINSTALL descriptor file using the necessary scripts.
If the application creates temporary files, they are deleted when no longer needed.

T
F
N/A
6-34
I&RTS 5.2
SEG: To refer external files you can use absolute path names or setting up an environment variable. Environment variable(s) is preferable to make changes later.
If the application uses absolute pathnames to reference files outside the application, it is able to determine the absolute path at runtime, and is able to handle symbolic links that are themselves symbolic links.

T
F
N/A
6-35
I&RTS 5.2, 5.9.4
SEG: Don’t redefine the environment variables.

Example: setenv MSL_HOME /h/Mslseg

setenv MSL_DATA $MSL_HOME/data

In the above example MSL_DATA setup will be ignored.
The application reuses environment variables already defined by the DII COE or by the affected account group. It does not create any environment variables that are identical in value to those defined by the DII COE or the affected account group, or that can be derived from them.

T
F
N/A
6-36
I&RTS Table 5-2
SRC: Developer must check table 5-2 in he I&RTS. Code must be modified if COE reserved symbols are being created by the segment.
The application does not create any environment variables or other public symbols with the same name as any environment variables listed as reserved in the I&RTS.

T
F
N/A
6-37
I&RTS 6.6.2
SEG: Include the shared files in the bin directory. In naming files use segment prefix unless chief engineer permission is granted.

SRC: May require source code change.
Shared libraries (Unix) and DLLs (NT) provided by the application are in the application’s bin subdirectory.

T
F
N/A
6-38
I&RTS 5.4.3
SEG: If the segment provides any public APIs must be well documented in the programmer’s guide. These APIs must be reentrant.

DOC: Procedures must be included in the document.
The application does not insert the current working directory (e.g., “.”) into the search path for executables.

T
F
N/A
6-39
No reference identified
DOC: Provide all the public APIs details in the programmer’s guide.

SEG: All the API’s must be reentrant. Indicate any limitations in the document.
If the segment provides public APIs, all uses of signals and process or thread creation within the segment’s public libraries are documented in the appropriate programmer’s guides. Moreover, all such API functions shall be reentrant to allow them to be called from a multithreaded application.

6-40
I&RTS 5.9.4
SEG: The global environment variables are extended through runtime which is applicable to the scripts directory of the segment.
(Unix) The global environment is extended through runtime extension files in the segment’s Scripts subdirectory.

6-41
I&RTS 5.4.4
SEG: Define the fonts and app-defaults in the data directory of the segment. Configure the file names using segment prefixes.

SRC: Code change may require in some cases.
(Unix) Fonts and app-defaults located underneath the segment’s data subdirectory follow the segment prefix naming convention specified in the I&RTS.

6-42
I&RTS 5.4.3
SEG: The segment shall append the bin directory at the end of the search path, not at the begining.

Example: set path = ($path $segprefix_HOME/bin)
(Unix) The segment appends, not prepends, its bin subdirectory to the environment variable used for the search path for finding executables. (This does not apply to COE child segments.)

T
F
N/A
6-43
I&RTS 5.2
SEG: Segment will use relative pathnames or symbolic links to reference files with in the segment.

SRC: Some times may require code changes.
(Unix) The application uses relative pathnames for symbolic links used to reference files within the application.

T
F
N/A
6-44
I&RTS 5.2
SEG: Segment will use relative pathnames or shortcuts to reference files with in the segment.

SRC: Some times may require code changes.
(NT) The application uses relative pathnames for shortcuts used to reference files within the application.

6-45
I&RTS 6.1, 6.5.2
SEG: Place all the DLL files in the segments bin directory.

SRC: Some times may require code changes.
(NT) The segment stores its DLL files in the segment’s bin subdirectory.

T
F
N/A
6-46
I&RTS 6.1
SEG: Segment does not alter the window path environment variable unless it is COTS product.
(NT) Unless a COTS product, the application does not alter the Windows path environment variable.

T
F
N/A
6-47
I&RTS 6.5.6, 6.5.7
SEG: Segment doesn’t use polling for synchronization.
(NT) The application does not use polling as a synchronization technique.

T
F
N/A
6-48
I&RTS 6.5.7
SEG: Segment doesn’t use MS-DOS functions.
(NT) The application does not use MS-DOS functions.

Segment Descriptors

6-49
I&RTS 5.5.1.7
SEG: The ReleaseNotes descriptor will confirm with I&RTS requirements in section 5.5.1.7
The ReleaseNotes descriptor conforms to the requirements stipulated in Chapter 5.

T
F
N/A
6-50
I&RTS 5.5.1.2
SEG: Any special file permissions will be implemented using FileAttribs descriptor.
If any files need special permission/ownership settings, they are established through the FileAttribs descriptor if the descriptor supports the required setting. Exceptions to this are documented and approved by the Chief Engineer.

Process Compliance

T
F
N/A
6-51
I&RTS 9.1.1, 9.1.3
SEG: A detailed API test suite must be provided covering all the segment APIs.
The application includes an API test suite that exhaustively exercises all APIs provided by the application.

T
F
N/A
6-52
I&RTS 5.2.1, 9.5
SEG: Man pages or HTML pages must be provided for the segment APIs.
The application includes man pages, or HTML-format pages, for all APIs that are to be distributed with the Developer’s Toolkit.

T
F
N/A
6-53
I&RTS 9.1.1
DEV: Application programmers have to compile the final version of the source code with all debug options turned off to minimize the size of the binary files.
The application has been compiled without the debug option enabled.

T
F
N/A
6-54
I&RTS 9.1.1
SEG: If API’s are implemented as shared libraries the static libraries will be also provided.
If the application has published APIs implemented as shared libraries, static libraries are available as well.

T
F
N/A
6-55
I&RTS 9.1.1
SEG: If the segment uses another segment’s public APIs, the segment must be linked with the shared library.
If the application uses another application’s public APIs and they are implemented as shared libraries, the application is linked with the shared libraries and not the static libraries.

6-56
I&RTS 5.5.5
SEG: Developer must have [Comm.deinstall] commands to undo the [Community] commands. EX. Append/Delete, Delete/Append, Comment/Uncomment, Uncomment/comment, etc…
If the segment has a DEINSTALL and Community descriptor, it also includes a Comm.deinstall descriptor which reverses the actions of the Community descriptor during segment removal.

6-57
I&RTS 5.5.11
DEV: If a new version of a previously delivered segment, the developer must install the old version of the segmented application with the DII COE installer. They then must install the new version and verify that the new version does in fact get installed over the old version.
The segment has been tested to ensure that it successfully installs over and replaces any previous version of the segment.

T
F
N/A
6-58
I&RTS 5.4.4
SEG: Requires the developer to build a separate directory structure and descriptor files of the “DATA” type.
If the application contains a large static database, it is a separate data module.

T
F
N/A
6-59
I&RTS 9.1.1
DEV: Application programmers have to run the Unix Strip program on the final version of the source code.
(Unix) The application executables have been run through the Unix strip program.

Miscellaneous

6-60
I&RTS 5.4
SEG: The predefined COE Account Groups are SysAdm (Kernel), SecMan (Kernel), C4I and DBAdmin. Other account groups may be developed to support different functional areas. These system account groups should be used over individual account groups specific to each application. This impacts the SegName file for the $SEGMENT line.
Unless an account group segment, the segment is integrated within one or more of the predefined account groups.

6-61
I&RTS 3.3
SRC: Application programmers may have to modify source code to eliminate some of the redundant functionality and make use of COE components instead..
If the COE provides functions required by the segment, at least 50% of the functions required are provided by the COE and not by duplicative code in the segment.

6-62
I&RTS 3.1.4
SEG: This impacts the version number specified in the VERSION descriptor file. New releases must increment, not decrement version numbers.
API backwards compatibility conforms to the version numbering scheme described in Chapter 3.

T
F
N/A
6-63
I&RTS 5.8.5
SRC: Develop may have to modify source code to eliminate all access to a command line prompt.
The application does not provide access to a command-line prompt.

A.7 Interoperable Compliance (Level 7)

Question
Reference
 Impact

SEG - Sementation File

SRC - Segemnt Source Code

DEV - Development Process

DOC - Documentation

NOTE - Other notes
Security

T
F
N/A
7-1
I&RTS 5.8.8
DEV: Can be tested by deleting all files in the Temp directories while the segmented application is running in the COE environment.
The application does not place any temporary files in the system maintained temporary directory that are sensitive to alteration, deletion, or disclosure to unauthorized users.

T
F
N/A
7-2
I&RTS 5.8.8
DEV: Can be tested by logging on as general user and attempting to delete files in the segment directory structure.
If the application creates files that are sensitive to alteration or deletion by unauthorized users, they are not placed in any directory where such users have write access, and those files do not have write permissions set for such users.

T
F
N/A
7-3
I&RTS 5.8.8
DEV: Requires a security analysis.
If the application creates files which are sensitive to disclosure to unauthorized users, they are not placed in any directory where users have such access.

T
F
N/A
7-4
I&RTS 5.8.5
SRC: May require source code changes to require a password at command line mode.
Entering a command-line mode requires the operator to enter a password and forces execution of the system login process.

T
F
N/A
7-5
I&RTS 5.8.1
SEG: The segment’s SegInfo file should define the application’s security classification via the [Security] section.
The application does not contain features with multiple security levels.

T
F
N/A
7-6
I&RTS 5.8.1
SEG: Include unclassified data files in the segment’s “Integ” directory.
Unclassified sample data is available with the application to allow for unclassified testing and training.

T
F
N/A
7-7
I&RTS 5.8.8,

5.8.9
SRC: May require source code changes to back out creation of global write files.
The application does not create files or directories with write permissions for “world” users.

7-8
I&RTS 5.8.9
SEG: May require additional subdirectories to be established under the segment’s data directory.
Data files with different file permissions are split into separate directories underneath the segment’s data subdirectory.

Standards Compliance

T
F
N/A
7-9
I&RTS 9.1.3
SRC: May require source code changes and recompile to comply with the ANSI standard.
If written in C, the application is ANSI-C-compliant.

T
F
N/A
7-10
I&RTS 9.1.2
SRC: May require source code changes and recompile to comply with the Ada-95 standard.
If written in Ada, the application is Ada-95-compliant.

T
F
N/A
7-11
I&RTS 9.1
SEG: The segment must contain the “include” and “lib” directories and include C and Ada API files. In unix, the segment must also include man page files for each API in a segment “man” directory. On NT, the segment must include help files in a segment “help” directory.
If the application contains public APIs, Ada and C interfaces are both available.

7-12
I&RTS 5.4.4
SEG: The SegInfo file must include the [Data] section and indicate the share attribute using the $SEGMENT, $LOCAL, $GLOBAL keyword.
Global and local data owned by the segment are located underneath $DATA_DIR as described in Chapter 5.

7-13
I&RTS 5.2.2
SRC: May require source code changes to make preferences user specific.
Operator-specific data is located underneath /h/USERS as described in Chapter 5.

7-14
I&RTS 5.3
SRC: Source code must be changed to include the segment prefix as part of all references to environment variables.
Excepting COTS segments, all environment variables are named with the segment prefix unless approved by the Chief Engineer. (The Chief Engineer may authorize “grandfathering” of certain environment variables.)

T
F
N/A
7-15
I&RTS 2.5
SRC: Source code changes may be required to change from private APIs to POSIX APIs for access to operating system functions.
The application uses only POSIX.1-defined interfaces to access the operating system.

Network Services

T
F
N/A
7-16
I&RTS 6.3
SRC: Source code changes may be required to access the registry.
(NT) The application determines the location for shared data through the registry.

7-17
I&RTS 6.1
SRC: Source code changes may be required to store shared resources in the I&RTs required locations.
(NT) The a stores information about shared resources in the location specified in Chapter 6.

GUI Environment

T
F
N/A
7-18
I&RTS 9.1.1
SRC: Source code changes may be required to eliminate hard-coded window behavior parameters.
The application uses resource files to control window behavior rather than hardcoded window behavior attributes.

T
F
N/A
7-19
I&RTS 6.5.7
SRC: Source code changes may be required to use standard function calls to support cut and paste between applications.
The application supports cut and paste between GUI-based segments through the use of a shared clipboard.

T
F
N/A
7-20
I&RTS 6.5.4
SRC: Source code changes may be required to support TrueType fonts.
(NT) The application uses TrueType fonts.

Database Services

T
F
N/A
7-21
I&RTS

3.2.2.2
SRC: May require source code modifications to change data references so that universal data segments are used.
Data objects within the database application do not duplicate those already contained in available Universal database segments.

T
F
N/A
7-22
I&RTS 4.2.8,

5.8.2
SRC: Database analyst may have to make database changes to accommodate this requirement.
Database fragmentation schemas are contained in separate modules.

T
F
N/A
7-23
I&RTS 4.3.5
SRC: Database analyst may have to make database changes to accommodate this requirement.
Database roles/groups are specific to application privileges, not general purpose.

T
F
N/A
7-24
I&RTS

 3.2.2.2
SRC: May require extensive analysis to find overlapping available SAHDE reference segments.
The database application does not duplicate any data available from the SHADE repository, except for performance reasons.

T
F
N/A
7-25
I&RTS 4.2.1
SRC: Database analyst may have to make database changes to back out any vendor specific (non-standard) SQL calls.
The database application uses only FIPS-127-2 SQL-defined interfaces to access the RDBMS query services.

T
F
N/A
7-26
I&RTS 4.3.3
SRC: Database analyst may have to make database changes to accommodate this requirement.
Data object creation script files follow the specified structure and naming convention.

T
F
N/A
7-27
I&RTS 2.1.6,

3.2.2.1
SRC: Database analyst may have to make database changes to accommodate this requirement.
The data objects contained within a database are standardized according to DOD 8320 guidance.

T
F
N/A
7-28
I&RTS 4.2.4
SRC: Database analyst may have to make database changes to accommodate this requirement.
All constraints and business rules are in the database, not the applications.

T
F
N/A
7-29
I&RTS 4.2.9
SRC: Database analyst may have to make database changes to accommodate this requirement.
The database server application provides a reload capability and a non-destructive update capability.

DCE Services

T
F
N/A
7-30
I&RTS 8.0,

App A
SRC: Developor may need to make changes to use COE-provided DCE services.
If the application uses DCE services, only the DCE interfaces defined by the DCE version supported by the COE (see Appendix A) are used to access those services.

Runtime Environment

T
F
N/A
7-31
I&RTS 5.3
SRC: Can’t define or derive a environment variable using the previously defined one. Application programmers may have to modify the source code.
The application does not include any environment variables that could be derived from an already defined environment variable.

7-32
I&RTS 5.4.4
SRC: Application programmers may have to modify source code to change the path variables associated with data files.
Segment references to global and local data are done through the $DATA_DIR environment variable.

7-33
I&RTS 6.1
SRC: Application programmers may have to modify source code to change the path variables associated with data files.
(NT) The ap stores private INI files, if any, in the segment’s data\INI subdirectory.

Miscellaneous

T
F
N/A
7-34
I&RTS 3.3
SRC: Application programmers may have to modify source code to eliminate redundant functionality and make use of COE components instead..
The application does not duplicate any functions provided by DII COE-component segments.

T
F
N/A
7-35
I&RTS 3.3
SRC: Application programmers may have to modify source code to eliminate some calls using private APIs.
No more than 25% of the applications accesses to DII COE-component segments will be through private APIs.

T
F
N/A
7-36
I&RTS 6.5.7
SRC: Application programmers may have to modify source code to eliminate functionality duplicated by standard Windows functions.
(NT) The application does not duplicate any Windows functions.

A.8 Full DII Compliance (Level 8)

Question
Reference
 Impact

SEG - Sementation File

SRC - Segemnt Source Code

DEV - Development Process

DOC - Documentation

NOTE - Other notes
Security

T
F
N/A
8-1
I&RTS 5.8.5
SRC: Source code may have to modified to write entry into a file every time a command line mode is initiated.
Entry to and exit from the command-line mode causes an entry into the system audit logs that specifies the date, time, and user involved.

8-2
I&RTS 5.3,

5.8.3, 5.8.5
SRC: Source code must be changed to include the segment prefix as part of the information written to the audit log.
Information written to the audit log includes the segment prefix.

T
F
N/A
8-3
I&RTS 5.8.9
SEG: May require additional subdirectories to be established under the segment’s data directory.
SRC: May impact the source code by requiring separate directory references for restricted and unrestricted files.
The application does not mix restricted and unrestricted data files in the same directory.

Standards Compliance

8-4
I&RTS 5.1.2
SEG: Use SegName and SegInfo as documented in the I&RTS and the Segmentation How to Guide.
The segment does not use any conventions obsoleted by this document (use of progs vs. bin, use of COMPONENT vs. CHILD, use of ModName and SegType vs. SegName etc.).

8-5
I&RTS 5.3
SRC: Source code must be changed to include the segment prefix as part of all references to public symbols created by the segment.
All public symbols are named with the segment prefix naming convention.

T
F
N/A
8-6
I&RTS 5.2
SRC: May require name change on segment directories and/or files.
All directory and file names begin with an alphanumeric character.

8-7
I&RTS 5.4.4
SRC: Requires that installation scripts and source code use the $DATA_DIR environment variable to reference data files.
The segment follows the convention that data owned by the segment under $DATA_DIR is in the form $DATA_DIR/local/segdir/data and $DATA_DIR/global/segdir/data where segdir is the segment’s home directory name.

GUI Environment

T
F
N/A
8-8
I&RTS 2.1.4
SRC: May require modifications to source code and/or resource file(s) to be fully compliant with the DII User Interface Specification.
DEV: Requires developer to look at all the requirements in the DII User Interface Specification and test the user interface of the segment to see if all requirements are satisfied.
The application is fully compliant with the DII User Interface Specification.

T
F
N/A
8-9
I&RTS 6.5.7
SRC: May require source code modifications to use these functions.
(NT) The application uses common control and dialog functions from COMCTL32.DLL and COMDLG32.DLL.

T
F
N/A
8-10
I&RTS 6.5.7
SRC: May require source code modifications to use these functions.
(NT) The application properly handles the window close message.

T
F
N/A
8-11
I&RTS 6.5.5
SRC: May require source code modifications to use these functions.
(NT) The application uses the Windows print dialog box for selecting printer configuration parameters.

Database Services

T
F
N/A
8-12
I&RTS

4.3.4.2
SRC: May require source code modifications to change data references so that standard data elements are used.
DEV: Developer must analyze the data requirements of the segment and the DISA Joint standards to see if standard data elements are available for use by the segmented software.
Data elements are chosen from Joint standards and use the data type, field width, and units of measure prescribed in the standard.

T
F
N/A
8-13
I&RTS

 3.2.2.2
SEG: Create a test database and include it in the segment’s “Integ” directory.
DEV: Verify that the test database is able to test the database according to a documented test procedure.
DOC: Include discussion of test database in test procedures submitted with segmented app.
A test database is available with test procedures to verify correct installation of the database and associated roles, and to verify correct operation of constraints defined in the database.

T
F
N/A
8-14
I&RTS

3.2.2.1,

3.2.2.2
SRC: May require application redesign to make use of universal reference segments and/or existing databases.
DEV: Requires extensive analysis of application segment’s data and existing system databases.
The application does not duplicate any data already maintained in the SHADE repository or the DII COE-based target system, unless for performance reasons and only as approved by the DII COE Chief Engineer.

T
F
N/A
8-15
I&RTS 4.0,

4.1
SRC: Redesign of the application may be required to use a COE segmented RDBMS.
The application uses only a DBMS supported by the DII COE.

Runtime Environment

T
F
N/A
8-16
I&RTS 5.2
SRC: May require source code changes to eliminate all but one home directory for the segmented application.
The application adds no more than one “home” environment variable to the global environment.

8-17
I&RTs 5.3,

5.4.8
SRC: May require source code changes to include the SegPrefix in front of all creation and reference of segment environment variables. May require source code changes to use Prefix in the name of all executable files.
All executables and public symbols are named segprefix_name, where segprefix is the assigned segment prefix.

8-18
I&RTS 6.1

(?)
SEG: Requires creation of a LOCALENV.BAT file.
SRC: May require source code changes to back out establishment of local environment settings in the source.
(NT) Local environmental settings are established through an LOCALENV.BAT file in the segment's Scripts subdirectory. [SHOULD THIS BE LOCALENV.INI?]

Segment Descriptors

8-19
I&RTS 5.1.2
SEG: Segment must include a “SegInfo” file.
The segment uses SegInfo rather than individual segment descriptor files.

Process Compliance

T
F
N/A
8-20
I&RTS 5.2.1
SEG: Create test data files and include them in the segment’s “Integ” directory.
The application includes a set of test data for verifying correct application operation.

Miscellaneous

T
F
N/A
8-21
I&RTS 3.3
SEG: The segment’s “include”, “lib”, “man” and “help” directories will have to include all required files for public APIs.
SRC: Source code changes may be required to change from private APIs to public APIs.
The application does not use any private APIs to access external applications. All accesses are through public APIs or approved protocol standards.

8-22
I&RTS 5.2.2
SRC: May require source code changes to make preferences available through COE preferences APIs.
Operator data is located through the Preferences APIs.

8-23
I&RTS 5.2.2
SRC: May require source code changes to make preferences available through COE preferences APIs.
The current operator profile is obtained through the Preferences APIs.

T
F
N/A
8-24
I&RTS 2.1.4,

 2.1.6
SRC: May require source code changes to remove functionality that overlaps with existing available segments.
DEV: May require extensive analysis to find overlapping functionality with other available segments.
The application does not duplicate functionality provided by any DII COE segment.

� With the present I&RTS release, a commercial CDE product provides the desktop. Thus, dtwm replaces mwm from the previous I&RTS. There should not be any impact to any segment that presently works under mwm.

� Developers should generally use $APPEND to add to community files, rather than $DELETE or $REPLACE. Developers should ensure that they delete or replace only those entries to a community file that their segment would have added.

� This can be done by redirecting the output of VerifySeg to the file VSOutput. Then, use any convenient ASCII editor to edit VSOutput to insert comments to explain all warning messages.

_945825348.doc
�������������������������������

DII_DEV

SampleSegments

examples

Scripts

libs

man

data

include

bin

/h

_945825353.doc
�����������������������

System Test of Installed Segments

Making Segment Install Media

Load Directory Structure

Create Segment Descriptor Files

Verifying the Segment

Testing Installation of Segments

Install COE & Toolkit

Create File Directory Structure

_945825354.doc
����������������������

Dii_dev

\h

examples

libs

bin

include

SampleSegments

_964517089.doc

DEV

/h

SegPrefix

SegDescrip

install

lib

Icons

Menus

bin

fonts

app_defaults

data

DBS_files

integ

_945825349.doc
�����������������������

System Test of Installed Segments

Making Segment Install Media

Load Directory Structure

Create Segment Descriptor Files

Verifying the Segment

Testing Installation of Segments

Install COE & Toolkit

Create File Directory Structure

_945825346.doc
���

TestSuite

SegPrefix

/h

DEV

SegDescrip

man

Integ

include

Scripts

lib

Icons

Menus

bin

fonts

app_defaults

data

_945825347.doc
���

TestSuite

SegPrefix

/h

DEV

SegDescrip

man

Integ

include

Scripts

lib

Icons

Menus

bin

fonts

app_defaults

data

_945825345.doc
���

DBS_files

lib

Integ

install

TestSuite

SegPrefix

/h

DEV

SegDescrip

man

include

Scripts

Icons

Menus

bin

fonts

app_defaults

data

