Microsoft Windows Logo Program Software Requirements

Design and Testing Guide for Applications Created to Run on Microsoft® Windows NT® 5.0 and Other 32‑bit Windows® Operating Systems

DRAFT: VERSION 0.5
October 2, 1998

We need your feedback! These requirements are not yet final and Microsoft would like to incorporate your input before finalization. Please send any and all feedback on these requirements to logotalk@microsoft.com by November 15, 1998.

Microsoft Corporation

This is a preliminary document and may be changed substantially prior to final commercial release. This document is provided for informational purposes only and Microsoft makes no warranties, either express or implied, in this document. Information in this document is subject to change without notice. The entire risk of the use or the results of the use of this document remains with the user. The names of companies, products, people, characters, and/or data mentioned herein are fictitious and are in no way intended to represent any real individual, company, product, or event, unless otherwise noted. Complying with all applicable copyright laws is the responsibility of the user. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of Microsoft Corporation.

Portions of this document specify and accompany software that is still in development. Some of the information in this documentation may be inaccurate or may not be an accurate representation of the functionality of final documentation or software. Microsoft assumes no responsibility for any damages that might occur directly or indirectly from these inaccuracies.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual property.

© 1998 Microsoft Corporation. All rights reserved.

ActiveX, Active Accessibility, Authenticode, BackOffice, Direct3D, DirectDraw, DirectInput, DirectShow, DirectSound, DirectX, IntelliMirror, JScript, Microsoft, Microsoft Press, MS, MS-DOS, MSDN, Outlook, Visual Basic, Visual C++, Windows, the Windows logo, Win32, Win64, and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Other product and company names mentioned herein may be the trademarks of their respective owners.

Contents

Part 1
Logo Program Overview

Chapter 1 Welcome
1
About the Microsoft Windows Logo
1
How To Use These Guidelines
3
Chapter 2 Getting the Logo for an Application
5
Overview
5
Signing the Agreements
6
Testing a Product
6
Getting Test Results
7
Using the Logo
7
Restrictions on International and Localized Versions
7
Part 2
Application Requirements for Basic Logo
Chapter 3 Windows Fundamentals
10
Summary of Windows Fundamental Requirements
10
How to Comply with Windows Fundamental Requirements
10
How to Pretest Applications for Windows Fundamental Requirements
15
Chapter 4 Application Install and Uninstall
17
Summary of Install/Uninstall Requirements
17
How to Comply with Install/Uninstall Requirements
17
How to Pretest Applications for Install/Uninstall
20
Chapter 5 Application Migration
21
Summary of Migration Requirements
21
How to Comply with Migration Requirements
21
How to Pretest Applications for Migration Requirements
22
Part 3
Application Requirements for Gold Logo

Chapter 6 User Interface Fundamentals
25
Summary of Requirements for UI Fundamentals
25
How to Comply with Requirements for UI Fundamentals
26
How to Pretest Applications for UI Fundamentals
30
Chapter 7 Windows Installer
33
Summary of Windows Installer Requirements
33
How to Comply with Windows Installer Requirements
34
How to Pretest Applications for Windows Installer Requirements
35
Chapter 8 User Data and Application Settings
36
Summary of User Data and Application Setting Requirements
36
How to Comply with User Data and Application Setting Requirements
37
How to Pretest Applications for User Data and Application Setting Requirements
44
Chapter 9 OnNow/ACPI Support
45
Summary of OnNow/ACPI Requirements
45
How to Comply with OnNow/ACPI Requirements
46
How to Pretest Applications for OnNow/ACPI Support
49
Appendix A Checklist for Logo Program
51
Glossary
53

Part 1

Logo Program Overview

This part of the Microsoft Windows Logo Program Software Requirements presents essential information about the Microsoft Windows Logo Program—its purpose and how to submit applications for compliance testing.

Chapter 1

Welcome

Welcome to the Microsoft Windows Logo Program Software Requirements, which presents design and compliance testing guidelines for applications created to run on the Microsoft® Windows NT® 5.0 operating system, as well as on the Windows® 98, Windows 95, and Windows NT 4.0 operating systems.

These guidelines describe the scope and purpose of the Logo Program, tell how to obtain the Logo for a product, and specify the Logo Program requirements for applications. This chapter presents:

· An introduction to the Logo

· How to use these guidelines

· What’s new in these guidelines

About the Microsoft Windows Logo

The Windows Logo Defined

The Microsoft Windows Logo Program is intended to let customers know which products have been tested to verify that they perform well with Windows operating systems.

Microsoft now offers a two-tiered Logo Program, defined as follows:

· “Basic” Logo: This Logo helps customers identify products that have been tested on 32-bit versions of Windows and Windows NT, while preserving the overall stability of the system. This Logo explicitly identifies the version (or versions) of Windows or Windows NT for which the product passed compliance testing.

· “Gold” Logo: This Logo helps customers identify products that are optimized specifically to deliver the benefits of Windows NT Workstation version 5.0 (referred to as Windows NT in these guidelines).

These Logos indicate that a software product has passed compliance testing, assuring customers that it meets the guidelines defined in this document. Logo compliance testing for software applications is conducted by an independent laboratory—VeriTest, Inc.—as described in Chapter 2 of this guide.

Software vendors can then license the Logo for use on product packaging, advertising, collateral, and other marketing materials for applications that have passed compliance testing. This Logo lets customers know that a product has specific characteristics, depending on whether it carried the “Basic” or “Gold” Logo. The fundamental requirements for the two levels of Logo compliance are summarized in the following sections.

Basic Logo Characteristics

Products that earn the Basic Logo have been tested to meet Microsoft standards for compatibility on Windows and Windows NT. A product that carries the Basic Logo includes these characteristics:

· Installs cleanly and does not interfere with system components.

· Uninstalls properly.

· Interoperates well with other applications on the system.

· Functions normally after the operating system is upgraded to Windows NT 5.0.

The Basic Logo is available for the following operating systems:

· Windows NT Workstation version 5.0

· Windows NT Workstation version 4.0

· Windows 98

· Windows 95

To license the Basic Logo, your product must pass the Basic requirements on Windows NT 5.0. In addition, you may license the Logo for the other listed operating systems if the product meets the Basic requirements on those operating systems. The Logo you receive will indicate the specific versions of Windows or Windows NT for which your product passed the requirements.

Gold Logo Characteristics

The Gold Logo identifies products that are optimized to deliver customers the benefits of Windows NT Workstation version 5.0. A product that carries the Gold Logo includes these characteristics:

· Provides a consistent, accessible user experience.

· Uses Windows Installer to ensure a robust, self-repairing installation.

· Ensures a good “roaming user” experience by properly separating user-versus-computer data and settings, and by complying with system policies set by administrators.

· Supports OnNow/ACPI capabilities, cooperating with the power management capabilities of the operating system, delivering the best mobile computing experience possible.

To see a complete checklist of all Basic and Gold Logo requirements, see Appendix A, “Checklist for Logo Program.”

CAUTION: The presence of either the Microsoft Windows Basic or Gold Logo on a product does NOT mean that Microsoft or the testing laboratory endorses or certifies a product. The Logo is not a quality assurance seal. Neither Microsoft nor the testing organization tests the quality of each product or ensures that it is bug-free. Please note that the license agreement for the Logo states:

You may only use the Logo as a symbol that your product has passed the applicable Microsoft Windows compatibility testing. You may not explicitly state or imply that Microsoft or the testing organization in any way endorses your product. Also, the Logo program is not intended to be a "certification" program, i.e., the Logo does not represent that Microsoft or the testing organization certifies your product(s) in any way.

See Also

See “Restrictions on International and Localized Versions” in Chapter 2.

How To Use These Guidelines

Note: This document contains all the technical requirements necessary to obtain the Basic or Gold Logo for software. You must complete the Vendor Questionnaire, License Agreement, and Testing Agreement to submit as part of your application for testing, as described in Chapter 2 of this guide.

Microsoft Windows Logo Program Software Requirements is divided into four parts, as shown in the following table.

Document Organization

Chapter
Description

Part 1 Logo Program Overview

Chapter 1, Welcome
Presents a summary of the Logo Program and background information and resources.

Chapter 2, Getting the Logo for an Application
Describes the process of preparing for and submitting an application for Logo Program compliance testing.

Part 2 Application Requirements for Basic Logo

Chapter 3, Windows Fundamentals
Describes application requirements for consistent, stable functionality.

Chapter 4, Application Installation and Uninstallation
Describes requirements for installing and uninstalling an application.

Chapter 5, Application
Migration
Describes requirements for ensuring that an application continues to function correctly after the user upgrades to the Windows NT 5.0 or later operating system.

Part 3 Application Requirements for Gold Logo

Chapter 6, User Interface Fundamentals
Describes the requirements for ensuring that the application provides a consistent, effective user interface.

Chapter 7, Windows Installer
Describes the requirements for implementing Windows Installer, ensuring that the application can be easily deployed in a corporate environment.

Chapter 8, User Data and Application Settings
Describes the requirements for supporting user profiles and system policies, ensuring that the application can be managed in a corporate environment.

Chapter 9, OnNow/ACPI Support
Describes the requirements for ensuring that the application can participate in system-wide power management.

Part 4 Appendix

Appendix A, Checklist for Logo Program
Provides a summary of the Basic and Gold requirements for the Logo Program.

Glossary
Provides summary definitions of key terms related to software and Logo Program requirements.

The following conventional terms are used throughout this guide.

Terms and Conventions

Term
Definition

Requirement
The feature must be supported as defined in these guidelines for the application to pass testing and receive the Logo.

Exception
These are situations where a requirement may not apply.

Verification
These are suggested ways that you can test whether your application meets a specific requirement.

Tip
These are helpful suggestions. They are not requirements.

See Also

See also the Glossary at the end of these guidelines.

References

The following list shows Microsoft resources that can help you build software that is compliant with the Logo requirements.

Resource
Address

Logo Program web site
http://www.microsoft.com/windows/winlogo/

Feedback on requirements
LogoTalk@microsoft.com

Logo information e-mail
(for all other issues)
Winlogo@microsoft.com

VeriTest Logo Lab e-mail
Logolab@veritest.com

Microsoft information for
software developers
http://msdn.microsoft.com/developer/
E-mail: msdn@microsoft.com

Knowledge Base
http://support.microsoft.com/support/

Microsoft Platform
Software Developer Kit (SDK)
Provided with Microsoft Developer Network (MSDN) Professional Subscription. To subscribe:

Fax: (425) 936-7329, Attn: Developer Network

E-mail: msdn@microsoft.com

http://msdn.microsoft.com/msdn/join/

Chapter 2

Getting the Logo for an Application

This chapter provides details for how to obtain the Logo, including:

· Signing the agreements

· Testing a product

· Getting test results

· Using the logo

Overview

The process of application compliance testing and licensing consists of these steps (details are provided later in this chapter):

1.
Make sure your application meets the requirements. Review your product to ensure that it complies with Logo requirements as described in this guide. To ensure the best results, pretest your product's installation using the Installation Analyzer tool from VeriTest, Inc.
The pretesting techniques suggested in this guide will help your product to pass on its first submission, saving you time and money. For more information, see Top Ten Reasons Why Applications Fail Logo Testing on the First Try at http://www.veritest.com/mslogos/nt98.htm.

2.
Complete and sign agreements. Obtain and sign the necessary legal documents.
3.
Send to VeriTest, Inc. Submit your product to VeriTest for compliance testing, together with pretest results and legal documents.
4.
Get test results. VeriTest will notify you of test results within five business days from when your complete application package is received. VeriTest sends Microsoft a copy of the test results, and, if your product passes, VeriTest also sends the license agreement to Microsoft for execution.
If your application passes, Microsoft signs your license and sends it to your marketing contact. The license allows you to use the Logo on packaging, advertising, your web site, and other promotional materials that are used in connection with applications that have passed compliance testing.

5.
Use the Logo. After you receive a license, you can download the Logo artwork kit, which contains electronic copies of the Logo, plus usage guidelines.
To see a checklist of all the Basic and Gold Logo requirements, see Appendix A, “Checklist for Logo Program.”

Signing the Agreements

You must complete and submit the following paperwork as part of your application for the Basic or Gold Logo.

· Complete the Logo license.

You must sign the Windows Logo License Agreement, available for download from the web at http://www.veritest.com/microsoft.htm. This document can also be ordered from the Microsoft automated faxback service at 800 727 3351. Request document #00000861. Submit a hard copy of this signed agreement along with your product for compliance testing.

Important: Your signature on this contract does not mean that you can start using the Logo. It only means that you have agreed to the license terms, and that you are waiting for your product to pass the tests and for Microsoft to sign the license.

· Complete the VeriTest testing agreement.

You must sign the testing agreement from VeriTest, available for download from the web at www.veritest.com/microsoft.htm. This document can also be ordered using the Microsoft automated faxback service at 800 727 3351. Request document #00000831. Submit a hard copy of this signed agreement along with your product for compliance testing.

Confidentiality Option. On the VeriTest, Inc. Testing Agreement, you have the option to keep your testing and test results confidential from Microsoft. If you choose this option, upon passing a compliance test, you must sign a release allowing VeriTest to send the results to Microsoft. Microsoft can grant you a license to use the Logo only after you sign this release.

· Complete the VeriTest Online Vendor Questionnaire.

You must fill out the VeriTest Online Vendor Questionnaire completely. The questionnaire is available on the VeriTest web site at http://www.veritest.com/microsoft.htm.

The more information you put in the Vendor Questionnaire, the better. This is where exceptions and requests for exemptions must be noted. Filling out the Vendor Questionnaire accurately and completely will ensure that your product is tested in the shortest time possible.

After filling out the Online Questionnaire on line, click the Submit button. You will receive a tracking number from VeriTest.

Important: It is recommended that you write this tracking number on your product disk or CD-ROM when you send it to VeriTest for compliance testing.

Testing a Product

Applications are tested by VeriTest, Inc., an independent laboratory. For the current fee schedule and more information, see the VeriTest Web site at http://www.veritest.com/microsoft.htm.

Important: All compliance testing fees are to be paid to VeriTest, not to Microsoft.

When you submit your product to VeriTest, you must include all of the following:

· Your software product on floppy disk, CD-ROM, or DVD-ROM.

· The results of your product pretesting.

· A signed paper copy of the VeriTest, Inc. Testing Agreement.

· A signed paper copy of the Windows Logo License Agreement.

· The test fee, payable to VeriTest.

Getting Test Results

Once you submit your product for compliance testing:

· You will receive test results from VeriTest within 5 business days from when your complete application package is received.

· If you did not choose the Confidentiality Option, VeriTest will send a copy of the test results to both Microsoft and you at the same time.

If you chose the Confidentiality Option in the VeriTest Testing Agreement (see “Signing the Agreements” earlier in this chapter), you must provide VeriTest with a signed release form before VeriTest will forward the test results to Microsoft.

· If your product passed compliance testing, VeriTest will send Microsoft the license agreement that you previously signed and submitted with your product compliance testing to VeriTest.

Again, if you chose the Confidentiality Option, VeriTest will not send anything to Microsoft until you provide a signed release form.

· Microsoft will then sign the license agreement and send it to the person you designated as the marketing contact in your Vendor Questionnaire.

At this point, you can prepare to begin using the Logo!

Using the Logo

Before using the Basic or Gold Logo, read the Microsoft Windows and Microsoft Windows NT Logo Guidelines available on the web site at http://www.microsoft.com/windows/winlogo/developer.

Once your product passes compliance testing and you receive a copy of the Microsoft Windows Logo License Agreement signed by Microsoft, you can begin to use the Logo on packaging, advertising, web sites, and other promotional materials for that product. You will be able to download an electronic copy of the Logo artwork kit from a secure web server using a password provided to you by VeriTest. This kit also contains electronic copies of the Logo and Logo usage guidelines.

Note: If your product box will be printed before you obtain the license to use the Logo, you can order Logo stickers from Special Effects in Seattle, Washington at specialeffex@msn.com. The stickers will be delivered when you receive the license to use the Logo.

Restrictions on International and Localized Versions

Because of the differences in core components of Windows NT and Windows 98 when they are localized to a language other than English, the Logo can only be used for localized versions of a product that are in the same language group as the product that is tested. The following list shows the language groups:

Double Byte Language Group—Far East:

Japanese, Korean, Traditional Chinese (Taiwan), Simplified Chinese (PRC)

Single Byte Language Group—Western European:

English, German, French, Spanish, Swedish, Italian, Dutch, Portuguese/Brazilian, Portuguese/Iberian, Catalan

Single Byte Language Group—Eastern European:

Finnish, Russian, Czech, Slovenian, Greek, Hungarian, Polish, Turkish, Slovak

Single Byte Language Group—Other:

Arabic, Hebrew, Thai, Vietnamese

An application must be submitted in the primary language version in which it is to be marketed—that is, where the most units are expected to be sold. VeriTest will test the application using the matching localized versions of Windows.

If the application passes compliance testing, the Logo will be licensed only for use with that language version of the application and other languages within the same language group. For example, if an application is submitted in English and passes in English, the Logo may be used on the packaging and advertising for the English version and also any Western European language listed in that group.

However, in a case like this, the Logo may not be used on the Japanese version unless the application is also submitted and passes in Japanese or another Double Byte language. To license the Logo for any version of the application in another language group, you must submit one version of the application localized to a language in the intended group, plus a retest fee. When this version of the application passes compliance testing, the Logo is licensed for use with all languages within the same language group.

You do not need to notify Microsoft that you are distributing the product internationally unless distribution includes the People's Republic of China, the Republic of China (Taiwan), or South Korea. If you are distributing to these countries, please send e‑mail to the Windows Logo Department at winlogo@microsoft.com with your company name, titles being distributed, and countries where they are being distributed. Please note the following language from the License Agreement for the Logo:

Important: The license right set forth in Section 2(a) shall not extend to the Republic of China (“Taiwan”), South Korea ("Korea"), or the People's Republic of China ("PRC"), unless and until COMPANY provides MS with written notice of COMPANY's intent to distribute Product in these countries. COMPANY agrees not to use the Logo in such countries and shall not be licensed pursuant to this Logo Agreement to do so until COMPANY has provided MS with such written notice.

Part 2

Application Requirements for Basic Logo

This part of the Microsoft Windows Logo Program Software Requirements presents the specific requirements and pretesting guidelines for the Basic level of the logo program, including:

· Chapter 3, Windows Fundamentals

· Chapter 4, Application Install and Uninstall

· Chapter 5, Application Migration

To qualify for the Basic Logo, these requirements must be met on Windows NT 5.0. In addition, you may also qualify for the Basic logo on the following operating systems, provided all the requirements are met on each operating system that you are applying for—Windows NT 4.0, Windows 98, and Windows 95.

Chapter 3

Windows Fundamentals

These guidelines define the Basic Logo Program requirements for consistent, stable operating system functionality

Summary of Windows Fundamental Requirements

Requirements

1.

Provide only 32-bit components

2.

Query the system for folder names

3.

Support informational keys in the registry

4.

Do not add to Win.ini or System.ini

5.

Ensure stability and functionality under Windows

6.

Perform Windows version checking correctly

7.

Support autoplay of compact discs

8.

Accommodate Logo requirements in distribution of suites and multiple
product versions

9.

Test software drivers that are shipped with applications

Rationale

Passing these requirements ensures that your application runs in a stable, reliable manner on Windows NT and Windows operating systems. Passing these requirements also ensure that the application can successfully find or write application or system data, avoiding problems related to hard-coded strings or expectations about how the user has configured the system.

Customer Benefits

· Customers are assured that a product that has received the Logo will be a stable part of the Logo-designated operating system.

· Customers can take advantage of the ability to customize Windows and be assured that an application that has received the Logo will continue to function in such an environment.

How to Comply with Windows Fundamental Requirements

1.
Provide only 32-bit components

An application must be a Win32® application programming interface (API) executable file, compiled with a 32-bit compiler that generates an executable file of the Portable Executable (PE) format, “[PE_Win32],” as reported by the Exedump program on the Microsoft Platform Software Developer’s Kit (SDK). This means that all dynamic-link libraries (DLLs) and executable (EXE) program files must be 32 bit.

If your application is not represented in PE format, for example, interpreted code, then the “run-time engine” must be a Win32-based executable file in the PE format. For example, if you develop an application in Microsoft Access, your application is an .mdb file, not an .exe, but Access.exe must be a Win32-based executable file in the PE format.

Exception:

In rare cases, minor 16-bit executable files and DLLs may be used to provide backward compatibility and links to 16-bit products. In this case, your application must determine at runtime whether calling 16-bit code from 32-bit code is supported by the operating system. If it is not, you must gracefully degrade the functionality, or use an alternative method to provide similar functionality using 32-bit code. You also will need to provide a mechanism to ensure that the application continues to function properly if the user upgrades the operating system to Windows NT 5.0.

For more information, see Chapter 5, “Application Migration.”
Important: You must fully explain any and all instances of 16-bit code when you submit your product for compliance testing. This must be done in the electronic Vendor Questionnaire you submit with your application.

2.
Query the system for folder names

For the special folders in the following list, your application should query the system directly to obtain the proper language-specific folder names. You can do this by using Win32 APIs, environment variables, or the registry.

The following folders can be located using Windows NT environment variables.

Standard folder
or location
Environment
variable
English default

System drive
%SystemDrive%
C:

System root directory
%SystemRoot%
C:\Winnt

Windows folder
%windir%
C:\Winnt

Program Files folder
%ProgramFiles%
C:\Program Files

User's profile folder
%UserProfile%
C:\Documents and Settings\<username>

User's temporary folder
%Temp%
C:\Documents and Settings\
<username>\Local Settings\Temp

For many folders, a qualified path can be obtained by calling the SHGetSpecialFolderLocation function with the appropriate CSIDL constant. The following standard folders are accessible in this way:

Standard folder
CSIDL constant name
Hex

Alternate Startup folder (All Users
profile, DBCS)
CSIDL_COMMON_ALTSTARTUP
0x1e

Alternate Startup ([user], DBCS)
CSIDL_ALTSTARTUP
0x1d

Application Data ([user] profile)
CSIDL_APPDATA
0x1a

Control Panel virtual folder
CSIDL_CONTROLS
0x03

Cookies folder
CSIDL_COOKIES
0x21

Desktop (namespace root)
CSIDL_DESKTOP
0x00

Desktop folder (All Users profile)
CSIDL_COMMON_DESKTOPDIRECTORY
0x19

Desktop folder ([user] profile)
CSIDL_DESKTOPDIRECTORY
0x10

Favorites folder (All Users profile)
CSIDL_COMMON_FAVORITES
0x1f

Favorites folder ([user] profile)
CSIDL_FAVORITES
0x06

Fonts virtual folder
CSIDL_FONTS
0x14

History folder
CSIDL_HISTORY
0x22

Internet Cache folder
CSIDL_INTERNET_CACHE
0x20

Internet virtual folder
CSIDL_INTERNET
0x01

My Computer virtual folder
CSIDL_DRIVES
0x11

Network Neighborhood root
CSIDL_NETWORK
0x12

Network Neighborhood directory
CSIDL_NETHOOD
0x13

Personal folder ([user] profile)
CSIDL_PERSONAL
0x05

Printers virtual folder
CSIDL_PRINTERS
0x04

PrintHood folder ([user] profile)
CSIDL_PRINTHOOD
0x1b

Programs folder (under Start menu
in All Users profile)
CSIDL_COMMON_PROGRAMS
0X17

Programs folder (under Start menu

in [user] profile)
CSIDL_PROGRAMS
0x02

Recent folder ([user] profile)
CSIDL_RECENT
0x08

Recycle Bin folder
CSIDL_BITBUCKET
0x0a

SendTo folder ([user] profile)
CSIDL_SENDTO
0x09

Start menu (All Users profile)
CSIDL_COMMON_STARTMENU
0x16

Start menu ([user] profile)
CSIDL_STARTMENU
0x0b

Startup folder (All Users profile)
CSIDL_COMMON_STARTUP
0x18

Startup folder ([user] profile)
CSIDL_STARTUP
0x07

Templates folder ([user] profile)
CSIDL_TEMPLATES
0x15

Installers and applications should make use of the %SystemRoot%, %windir%, and %SystemDrive% environment variables, and the ExpandEnvironmentStrings function. In particular, do not hardcode paths to the Windows system root or to the drive containing Windows in the registry because users might remap their drives under Windows NT.

Installers and applications should store string data as separate REG_SZ, REG_MULTI_SZ or REG_EXPAND_SZ values instead of embedding such strings as REG_BINARY data in the registry. This helps resolve ANSI to Unicode conversion issues when upgrading a Windows 98-based computer to Windows NT.

For example, under Windows NT, do not use a key such as the following:

MyPath : REG_SZ : "C:\Program Files\MyApp"

// BAD PRACTICE!

Instead, use a key such as:

MyPath : REG_EXPAND_SZ : "%Program Files%\MyApp"

//GOOD PRACTICE

When the string is retrieved, the ExpandEnvironmentStrings function can be used to get the up-to-date path.

3.
Support informational keys in the registry

Your application must write all the information in the following table to the registry so that Add/Remove Programs in the Control Panel can obtain information about the application as needed.

The registry values should be written under the following key:

HKEY_LOCAL_MACHINE

 \Software

 \Microsoft

 \Windows

 \CurrentVersion

 \Uninstall

 \NameofApplication

Registry Information Keys

Name of value
Type
Contains

DisplayName
REG_SZ
Display name of application.

DisplayVersion
REG_SZ
Display version number of application.

HelpLink
REG_SZ*
Full path of Help file or Help URL for application.

HelpTelephone
REG_SZ
Telephone number for support/help.

InstallLocation
REG_SZ*
Full path where application is located (folder or .exe).

InstallSource
REG_SZ*
Location where application was installed from.

ModifyPath
REG_SZ*
Full path to the application’s setup/modify program.

ProductID
REG_SZ
Product ID of installed application.

Publisher
REG_SZ
Publisher/Developer of application.

RegCompany
REG_SZ
Registered company of application.

RegOwner
REG_SZ
Registered owner of application.

UninstallPath
REG_SZ*
Full path to the application’s uninstall program.

URLInfoAbout
REG_SZ*
URL that provides a link to the publisher’s home page or the application’s home page.

URLUpdateInfo
REG_SZ*
URL of update Information for application.

VersionMajor
DWORD
Major version number of application.

VersionMinor
DWORD
Minor version of application.

* For Windows NT 4.0 and Windows 98, the REG_SZ notation should be used for all registry entries requiring string values. However, for Windows NT 5.0, the REG_EXPAND_SZ notation should be used whenever possible for all string entries with asterisks.

InstallSource: This is the path from which the application was installed. It could also be an HTTP web site or a network universal naming convention (UNC) path, such as \\applications\sample. If the application were installed from floppy, then this value would be a:\, for the floppy drive letter. This value also supports multiple paths. To add additional paths, just separate each path with a semicolon. For example:

InstallSource = \\applications\sample; \\corpnet\sample

Note the following example of registration information for a Windows NT 5.0 application.

Example of Application Registration in the Registry

Name of value
Type
Example contents

DisplayName
REG_SZ
Sample Application

UninstallPath
REG_EXPAND_SZ
%SYSTEMDRIVE%\Program Files\Sample\uninstall.exe

ModifyPath
REG_EXPAND_SZ
%SYSTEMDRIVE%\Program Files\Sample\modify.exe

InstallLocation
REG_EXPAND_SZ
%SYSTEMDRIVE%\Program Files\Sample

InstallSource
REG_EXPAND_SZ
A:\

DisplayVersion
REG_SZ
1.0a

VersionMajor
DWORD
1

VersionMinor
DWORD
1

Publisher
REG_SZ
Sample Corp

ProductID
REG_SZ
111-111-111

RegOwner
REG_SZ
Test User

RegCompany
REG_SZ
Test Company

HelpTelephone
REG_SZ
1-800-555-5555

HelpLink
REG_EXPAND_SZ
%SYSTEMDRIVE%\Program Files\Sample\sample.hlp

URLUpdateInfo
REG_SZ
http://sample.com/sampleapp/update.html

URLInfoAbout
REG_SZ
http://sample.com/sampleapp/default.html

4.
Do not add to Win.ini or System.ini

Your application must not add information to Win.ini or System.ini. Any exceptions to this requirement must be documented in the Vendor Questionnaire.

Exception

Applications that must support links to existing 16-bit products can write to these files. For example, certain multimedia applications may require video codecs not supplied with Windows NT or Windows 98. Certain other products, such as screen savers, may not be supported in the registry and must write to Win.ini or System.ini.

Writes to the [Embedded] section of Win.ini may be unavoidable. It is acceptable to write to the [Font] section of Win.ini, and to leave behind fonts and font information after uninstallation.

5.
Ensure stability and functionality under Windows

The product must be fully functional and stable on Windows NT 5.0, as well as on any other Windows operating system for which you are applying. As part of the Logo Program compliance testing, vigorous stability testing will be performed to confirm that your product does not adversely affect the overall stability of the operating system.

6.
Perform Windows version checking correctly

Your application must verify that the operating system meets the minimum version requirements for your application, and the application must also install on all later versions of that operating system.

For example, if the application requires Windows NT 4.0 Service Pack 3 (SP3), your version checking should allow installation on Major Version 4, Minor Version 0, SP3, and it must also install on all operating system version numbers that are greater than this number (for example, Windows NT 4.0 SP4, Windows NT, 5.0 with no Service Pack, and so on).

7.
Support autoplay of compact discs

Products distributed on CD-ROM must use the AutoPlay feature to begin setup or launch the program itself the first time the application is run. It is up to the vendor whether AutoPlay is enabled on subsequent insertions of the CD-ROM. In the case of products distributed on multiple CD-ROMs, subsequent CD-ROMs must either use the AutoPlay feature or behave during install like a subsequent floppy disk; they must continue installation without prompting the user for action.
It is not acceptable to require the end user to use Start/Run to launch the installation from the CD-ROM.
8.
Accommodate Logo requirements in distribution of suites and multiple product versions

· Bundled applications in suites are tested individually.

For a bundled package of applications, commonly known as a “suite,” to use the Logo, each individual product in that suite must be tested and pass the Logo requirements.

Each individually-shipped product that will use the Logo has to be retested only for compliance with Logo installation and uninstallation requirements.

· Identify 16-bit legacy versions clearly.

The Logo program is for 32-bit Windows-based applications. However, vendors may distribute 16-bit versions of their product on the same distribution media as the 32-bit Logo-tested product, provided that the installer clearly distinguishes the difference between the 16-bit product and the 32-bit products designed for Windows NT and Windows 98. A message must be included such as:

“Do you also wish to install Product Y? This is a 16-bit product that is not designed for Microsoft Windows NT and Windows 98, but it can be run on your operating system.”

9.
Test software drivers that are shipped with applications

Any software drivers that are included with applications must go through additional testing as part of Logo compliance testing. Such software drivers include file system filter drivers included with anti-virus utilities.

How to Pretest Applications for Windows Fundamental Requirements

Follow these pretesting guidelines to help to ensure that your application meets the basic requirements for stability.

To pretest for entries in Win.ini and System.ini files:

1.
Create and save a copy of these files before installing the application on a computer where Windows has been freshly installed.

2.
Install the application.

3.
Compare the installed version of the files to the saved version of the files, verifying that no changes were made.

To pretest for stability using Performance Monitor on Windows NT:

Note: The following is one of the pretests that can be run to test the stability of your product:

1.
Start the Performance Monitor (Perfmon.exe).

2.
Choose to view counters from "Memory," "Objects," and any other object types relevant to your application.

3.
Run your application for extended periods, exercising all of your product's functions, and ensure that all systematic changes in the system resources are accounted for.

4.
Switch video modes on the fly, and make sure your product is still operational.

To pretest for stability using the Stress test on Windows 95/98:

Note: The following is one of the pretests that can be run to test the stability of your product.

1.
Find the Stress application in the Microsoft Platform SDK (\mstools\bin\win98\stress.exe).

2.
Select the following options:

User Heap
GDI Heap
Wind32 Heap
Menu32 Heap
GDI32 Heap

3.
Set the Level to 2.

4.
Start the Stress program.

5.
With the Stress program running, start your product from its icon.

6.
Exercise all of your product's functions, and make sure they are stable even when the system is under stress.

7.
Switch video modes on the fly, and make sure your product is still operational.

8.
Test to see that printing and all other input/output functions are supported.

9.
Close the Stress program; start one popular 16-bit application and one popular 32-bit application to determine if your product still runs without problems while both applications are active.

Chapter 4

Application Install and Uninstall

These guidelines define the Basic Logo Program requirements for application installation and uninstallation.

Important: Although the use of Windows Installer Service is not required for the Basic Logo, Microsoft strongly encourages all ISVs to use it. Windows Installer provides the easiest way to implement the requirements in this chapter because an application that uses Windows Installer will automatically comply with each of the requirements in this chapter. For information, see Chapter 7, “Windows Installer.”

Summary of Install/Uninstall Requirements

Requirements

1.

Check availability and access to resources before install

2.

Provide the appropriate default install location

3.

Do not overwrite files with older versions

4.

Refcount all shared application files during installation

5.

Provide and register a fully automated uninstaller

6.

Decrement the count on shared application files during uninstall

Rationale

When an application passes these requirements, it helps to ensure that the user has successful installation and uninstallation experiences, and to ensure that the application co-exists in a friendly way with other applications.

Customer Benefits

· Installation or removal of the application does not affect the operability of the operating system or other applications.

· The user can easily begin and complete application installation.

How to Comply with Install/Uninstall Requirements

Installation Fundamentals
1.
Check availability and access to resources before install

Before modifying any bits on the computer during the setup process, the installer must check for the availability of and access to any resources it may need. Specifically, it must check for system resources, the absence of which would cause abnormal termination of the install. The goal is avoid the situation where install proceeds halfway, fails, and then terminates, leaving useless files on the system.
Examples of what resources should check for include:

· File system access

· Sufficient disk space

· Registry access

For example, when installing the application, the installer must check for the user privilege level. If the user is not an administrator, and the application will work, but with limited functionality, the installer must warn the user that only limited functionality will be available. This is because the user does not have administrator privileges—the installer must allow the user to discontinue the installation. This can be accomplished by using the following sample code or by following the procedures that are described in the Knowledge Base article PSS ID# Q118626.

//--//

// IsAdmin() - tests to see if the current user is an admin

//--//

BOOL IsAdmin() {

SC_HANDLE hSC;

//

// Try an Admin Privileged API - if it works return

// TRUE - else FALSE

//

 hSC = OpenSCManager(

 NULL,

 NULL,

 GENERIC_READ | GENERIC_WRITE | GENERIC_EXECUTE

);

 if(hSC == NULL) {

return FALSE;

 }

CloseServiceHandle(hSC);

return TRUE;

}

2.
Provide the appropriate default install location

By default, your application must install into an appropriate subdirectory based on the current setting of the HKLM\Microsoft\Windows\CurrentVersion\ProgramFilesDir registry key.

3.
Do not overwrite files with older versions

Installing an application should never regress any files that were previously on the system. The GetFileVersionInfo API provides a mechanism to do this. Any exceptions to this must be documented in the Vendor Questionnaire.

Important: No exceptions will be allowed for any of the core system files. See http://www.veritest.com/ftp/core.htm for the most up-to-date, complete list of Windows core components. The core component list is updated regularly. It is the vendor's responsibility to check the web for the up-to-date list.

4.
Refcount all shared application files during installation

The application installer must refcount all shared components designed to be uninstalled under the following registry key:

[HKEY_LOCAL_MACHINE]\SOFTWARE\Microsoft\Windows\Current Version\SharedDLLs

Do not refcount system or core files.

Uninstall Fundamentals

5.
Provide and register a fully automated uninstaller

The product must provide a fully automated uninstaller that removes the application. The uninstaller must be properly registered and must appear under Add/Remove Programs in the Control Panel. The method for registration is:

[HKEY_LOCAL_MACHINE]\SOFTWARE\Microsoft\Windows\Current Version\Uninstall\YourProductName

DisplayName=REG_SZ:<your product name and version number>

UninstallString=REG_SZ: c:\apps\myapp\uninstll.log /h

Tip: If your application creates temporary files that should be removed during uninstallation, create a zero-length (0) file with the same name at installation time. Examples of such files would be .gid files created by Help.

The uninstaller should remove:

· All non-shared application files and folders

· Registry entries, except for keys that might be shared by other programs

· All shortcuts from the Start menu

· The uninstaller itself

Exceptions

User data files, including the following, should remain on the hard disk:

· Resources that other programs might use, such as sharable DLLs, sharable fonts, and sharable registry entries.

· If you are not sure whether removing a DLL might harm other applications, it is better to leave it behind. However, you must explain everything you leave behind when you submit your application for compliance testing. The proper place to do this is in the Vendor Questionnaire.

6.
Decrement the count on shared application files during uninstall

The uninstaller must accurately decrement the count on all the components your application uses that are installed as shared components. Delete them when the refcount reaches zero. The uninstaller must not decrement or remove any core file.

If your installer finds a shared component already on the system that is not registered, the SharedDLL count should be incremented by 1 plus the number of clients being installed. For example, if you install your application with three clients using a shared file, your installer will bump the SharedDLL count by 3. But if the shared file was already on the system and no SharedDLL exists for it (that is, the previous installer did not create the refcount), then set the SharedDLL count to 4. That way, when your application is uninstalled, it leaves the shared file on the system with a refcount of 1.

How to Pretest Applications for Install/Uninstall

Before submitting your product to VeriTest for compliance testing, you are required to pretest its installation process.

To pretest your product's installation process:

· Use the Installation Analyzer found at http://www.veritest.com/mslogos/nt98 under Program Downloads.

· To test for access and availability of system resources, log onto Windows NT on a locked-down computer and run Install.

Chapter 5

Application Migration

This chapter describes Basic Logo Program requirements for ensuring that an application migrates correctly when the user upgrades the operating system to Windows NT 5.0 or later versions.

Summary of Migration Requirements

Requirements

1.

Migrate correctly upon upgrade to Windows NT 5.0

Rationale

Millions of users today are running Windows 95 or Windows 98. Looking ahead, Windows NT 5.0 will increasingly become the predominant operating system of choice. Many of those Windows 95/98 machines will be upgraded to Windows NT 5.0. The goal of this requirement is to ensure that when users upgrade their operating system, previously installed applications will continue to function as before, with all preferences and privileges working after the upgrade.

Customer Benefits

· Applications work properly after customers upgrade to new operating systems, with no loss of functionality.

· Customers experience reduced Total Cost of Ownership (TCO).

· End-users’ experience with their applications and the operating system is the same or better after the upgrade.

How to Comply with Migration Requirements

1.
Migrate correctly upon upgrade to Windows NT 5.0

An application installed on Windows 95 or Windows 98 must remain fully functional after an operating system upgrade to Windows NT 5.0.

In the ideal case, applications will use a single set of binaries and not require different setup configurations on Windows 98 and Windows NT 5.0. This is the best way to ensure a smooth upgrade of your application.

In the event that different binaries are required for the different operating systems, Microsoft suggests the following alternatives to ensure smooth application migration. While the method you choose is up to you, it is a requirement that the application successfully migrate:
· When installing on one 32-bit Microsoft Windows operating system, the installer installs all the additional binaries that would be required to make the program operate on the other operating system.

The application should determine at runtime which components to use. For example, if the application requires a different DLL on Windows NT than on Windows 98, the application should install both and pick the one to actually load and use at application startup time.

If the application requires a different .exe for each operating system, then write a stub .exe that calls the correct .exe based on a run-time version check (GetVersionEx() Win32 API). This will allow applications to be upgraded from Windows 98 to future versions of Windows NT.

Note, however, that such a solution is not ideal if the additional set of binaries requires large amounts of the user’s disk space.

· If needed, write and distribute a migration DLL to perform the migration as described in the Windows 98 to Windows NT 5.0 Migration Kit and the Migration Extension Interface Reference in the Microsoft Platform SDK. (See http://msdn.microsoft.com/developer/news/feature/110397/migration/.) Migration DLLs make calls to the Migration Extension Interface. This is an extension to Windows Setup that ensures that your application will work correctly after an end user installs Windows NT 5.0 over Windows 95/98.

Once the Migration DLL is complete, application vendors must make it available. Place your Migrate.dll file, along with your company’s digital certificate and other associated files, on your distribution media, on the web site from which the user installed the application, or on the user’s hard disk. If the files are installed on the hard disk, you must write the following to the Windows 95 or Windows 98 registry:

HKLM\Software\Microsoft\Windows\CurrentVersion\Setup\Migration DLLs

 Value name: <ProductID string >

 Value: <path to MIGRATE.DLL>

Note: The ProductID must match the string returned by the QueryVersion function described on the web site available at: http://msdn.microsoft.com
/developer/news/feature/110397/Migration/migext.htm

Following this process makes the migration process “seamless” and silent for the user.

You might want to consider using the Migration DLL AppWizard. The Migration DLL AppWizard is a tool that creates a skeleton migration DLL with localization support. Full implementation details are available at:
http://msdn.microsoft.com/developer/news/feature/110397/migration/migrtdll.htm

Please note that the Migration DLL AppWizard is not supported by Microsoft.

How to Pretest Applications for Migration Requirements

Migration DLLs must be thoroughly tested before being distributed to end users by means of the web or other media. Migrations DLLs must be tested for compliance as specified in the Microsoft Platform SDK. In particular, note:

· No changes may be made on the Window 95/98 side of setup, except to the working directory and answer file.

· All changes must be reported to setup using Migrate.inf.

· It is recommended that no user interface (UI) be present.

· No UI is allowed in unattended mode.

The following procedures outline the minimal process you should undertake during your test. Note that you should repeat the tests for multiple user account scenarios, that is, default, roaming, workgroup, and domain users. The scenarios should also cover combinations of these user accounts.

To test your migration DLL under an attended upgrade:

1.
Install a version of Windows 95/98 on a computer.

2.
Install the target application on the computer.

3.
Start Windows NT Setup and select the Upgrade option on the Welcome page.

4.
Insert the media containing the migration DLL when prompted.

5.
Complete Windows NT Setup.

6.
Launch the migrated application on Windows NT.

7.
Run test suites to determine if the application is fully functional.

To test your migration DLL under an unattended upgrade:

1.
Install a version of Windows 95/98 on a computer.

2.
Install the target application on the computer.

3.
Place the migration DLL in a subdirectory of %windir%\setup\win95upg.

4.
Start Windows NT Setup in unattended mode with the “Win95Upgrade = Yes” key set in the answer file.

5.
Complete Windows NT Setup.

6.
Launch the migrated application on Windows NT.

7.
Run test suites to determine if the application is fully functional.

Reference

For more information, see the web site available at: http://msdn.microsoft.com/developer/news/feature/110397/Migration/migext.htm#migext_testing.

Part 3

Application Requirements for Gold Logo

This part of the Microsoft Windows Logo Program Software Requirements presents the specific requirements and pretesting guidelines for the Gold level of the logo program, including:

· Chapter 6, User Interface Fundamentals

· Chapter 7, Windows Installer

· Chapter 8, User Data and Application Settings
· Chapter 9, OnNow/ACPI Support

Chapter 6

User Interface Fundamentals

These guidelines define the Gold Logo Program requirements related to providing a consistent, effective user interface (UI) and experience that meets user expectations and needs.

Summary of Requirements for UI Fundamentals

Requirements

1.
Support standard system size, color, and input settings

2.
Ensure compatibility with the High Contrast option

3.
Provide keyboard access to all features

4.
Document the keyboard user interface

5.
Provide notification of the keyboard focus location

6.
Do not rely on sound alone

Rationale

· Consistency and accessibility among Windows-based applications increases customer confidence in the Windows platform.

· Providing a consistent user interface reduces training, support, and testing costs for customers.

· Employers who use the Windows platforms require software to be usable by a wide range of users in order to comply with employment and equal rights legislation.

· Meeting these steps helps to ensure that software will be compatible with future enhancements that are planned for the Windows platform, including speech input, speech output, and intelligent task automation.

Reference

For more information on Windows guidelines for UI design, see The Microsoft Windows Guidelines for User Interface Design.

For more information about meeting these requirements, and for techniques on and the benefits of making computers usable by a wide range of individuals, see http://microsoft.com/enable/.

Customer Benefits

· Meeting UI requirements reduces the TCO associated with training, evaluation, and support, because applications behave in a consistent manner and accommodate user needs.

· Meeting UI requirements enables the use of sophisticated automation tools, including testing tools, task automation tools such as intelligent agents, and new input methods such as voice input. Such tools exist today and are likely to be incorporated into future versions of the Windows platform.

· Meeting UI requirements enables your business customers that are located in the United States to comply with the Americans with Disabilities Act, which requires that they provide reasonable accommodation for employees with disabilities. It also enables government agencies, schools, and organizations receiving federal funding to comply with section 508 of the Rehabilitation Act, which was strengthened in the reauthorization of 1998. Similar legislation exists or is pending in some states and in other countries.

· Meeting UI requirements enables your customers to purchase software that meets standards for usability, such as HFES/ANSI 200 and ISO 9241. Such standards exist and will continue to be expanded to incorporate high-level requirements for usability and accessibility.

· Meeting UI requirements enables over 49 million people in the United States who have disabilities to use your products. The U.S. Access Board estimates that one in five people, and one in eight Internet users, have some form of functional limitation.

· Meeting UI requirements enables employers to benefit by keeping valuable employees even when they receive a permanent or temporary disability, such as repetitive strain injury associated with typing or using a mouse, or experience functional limitations that are a natural part of aging.

How to Comply with Requirements for UI Fundamentals

This section defines the requirements for a consistent user experience.

1.
Support standard system size, color, and input settings

Your application must be compatible with the system size, color, font, sound, and input settings defined in the following table. Support for these system settings is required to provide users with a consistent user interface and to allow them to customize the system to meet their needs and preferences. These settings are queried using the GetSystemMetrics, SystemParametersInfo, or GetSysColors functions.

Standard window classes and controls automatically support all of the settings required here. Applications need to be aware of these settings only when creating custom window classes or controls, owner-drawn controls, or when using superclassing or subclassing to alter the normal behavior of standard windows or controls.

List to be updated in a future draft against current SDK entries for SystemParametersInfo and GetSystemMetrics

Required System Settings

Required Size Settings

SM_CXFIXEDFRAME
Window frame width

SM_CYFIXEDFRAME
Window frame height

SM_CXDLGFRAME
Dialog box frame width

SM_CYDLGFRAME
Dialog box frame height

SM_CXMENUSIZE
Menu width

SM_CYMENUSIZE
Menu height

SM_CXSIZEFRAME
Resizable window frame width

SM_CYSIZEFRAME
Resizable window frame height

SM_CXFRAME
Non-resizable window frame width

SM_CYFRAME
Non-resizable window frame height

SM_CXVSCROLL
Scroll bar width

SM_CYVSCROLL
Scroll bar height

SM_CXSCREEN

SM_CYSCREEN

SM_CXFULLSCREEN

SM_CYFULLSCREEN

SM_CXMAXIMIZED
Maximized window width

SM_CYMAXIMIZED
Maximized window height

SM_CXTRACK
Scroll bar tracking button width

SM_CYTRACK
Scroll bar tracking button height

SM_CYMENU
Menu item height

SPI_GETICONTITLELOGFONT
Icon title font

SPI_GETNONCLIENTMETRICS

SPI_GETBORDER
Minimum line width

SPI_GETWORKAREA

Required Color Settings

SPI_GETHIGHCONTRAST
All GetSysColor settings are required for menus, dialog boxes, and other standard UI elements when SPI_GETHIGHCONTRAST is TRUE.

Required Input Settings

SM_CXDOUBLECLK

Two mouse clicks must occur between this horizontal distance in order to be recognized as a double-click.

SM_CYDOUBLECLK

Two mouse clicks must occur between this vertical distance in order to be recognized as a double-click.

SM_CXDRAG

A MouseDown and the following MouseUp events must occur at least this horizontal distance apart in order to be recognized as a drag event instead of a click.

SM_CYDRAG

A MouseDown and the following MouseUp events must occur at least this vertical distance apart in order to be recognized as a drag event instead of a click.

SPI_GETKEYBOARDPREF

When true, applications should display any optional user interface or enable nondefault behaviors that are necessary for easy use with the keyboard instead of the mouse.

Required Sound Settings

SPI_GETSHOWSOUNDS
When true, the application must present all information visually instead of by sound alone.

Required Multi-Monitor Settings

SM_XVIRTUALSCREEN

SM_YVIRTUALSCREEN

SM_CXVIRTUALSCREEN

SM_CYVIRTUALSCREEN

SM_SAMEDISPLAYFORMAT

SM_CMONITORS

2.
Ensure compatibility with the High Contrast option

Your application must be compatible with the High Contrast option, which indicates that the user requires a high degree of contrast to improve screen legibility. When this option is set:

1.
Menus and dialog boxes must be displayed using the color scheme currently chosen in Control Panel. This also applies to any other UI elements that are required to adjust colors in the application’s UI.

2.
The user must be able to adjust the colors used to display anything in the application’s windows.

· This option must override the display of colors used by the application or document without altering the content of the document itself or affecting other users.

· The preferred method is to use the color scheme currently chosen in Control Panel, but the application can also provide its own customized display options.

· When colors are chosen through Control Panel or through customization, always draw foreground objects in foreground colors and fill backgrounds with the corresponding background color.

3.
Because the user may choose a monochrome appearance scheme, any information normally conveyed by color must also be available through other means, such as sound or a visual display.

4.
Omit any images or patterns drawn behind text. Any important information conveyed with such backgrounds must be available through other means.

Because documents are typically shared, a user must not be required to alter a document to adjust its appearance on the screen; this may require the application to display the document on the screen using colors other than those specified in the document.

Users can adjust the High Contrast option through the Accessibility Options section of Control Panel under Windows 95/98 and Windows NT 5.0. This mode is independent of the high contrast appearance schemes available through the Display section of Control Panel.

Applications can determine the current value of the High Contrast option by using the SystemParametersInfo function to query SPI_GETHIGHCONTRAST.

Applications can determine the current color scheme chosen through Control Panel by using the GetSysColors function.

Exemptions

Certain application features may be exempted from High Contrast requirements when the use of color is intrinsic and indispensable to the goal of the feature. Examples include:

· Palettes or swatches where the user selects from a range of displayed colors.

· Animation, video, and graphic images when the information content is available through other means.

· Entire applications are exempted only when it can be shown that the application has no value without the use of color. For example, painting programs may be exempted, but drawing programs where the user manipulates shapes would not be exempted.

· Games may be exempted from High Contrast requirements, but reference and educational titles will not be exempted.

When the major features in the application support the High Contrast option, exceptions may also be made for minor features that are not required for the operation of the program.

Requests for exemptions are judged on a case-by-case basis. You must detail these exceptions in your Vendor Questionnaire.

3.
Provide keyboard access to all features

Your application must provide keyboard access to all features.

Exemptions

Exemptions may be made in the following cases:

· Games that are dependent upon the use of a mouse or joystick. It is recommended, but not required, that games provide keyboard support where feasible. They should not require a pointing device except where it is unavoidable due to the nature of the game.

· Applications that rely on specialized input devices, such as graphing tablets.

· Situations where the mouse targets are no larger than a pixel. For example, painting with the mouse. These features may rely on the MouseKeys feature built into the 32-bit Microsoft Windows operating systems to allow users to move the mouse pointer using the keyboard. However, this is not acceptable for drawing when the user can independently manipulate separate text and graphic objects. This exemption applies to individual features within a product, not to the entire application.

When the major features in the application have keyboard access, exceptions may be made for minor features that are not required for the operation of the program.

Requests for exemptions are judged on a case-by-case basis. You must detail these exceptions in your Vendor Questionnaire.

4.
Document the keyboard user interface

The keyboard user interface must be documented. The product’s standard documentation must either include this information or tell the user where such documents can be obtained. For example, the information can be in the online help, in a text file on the product CD, or on the product’s Web site.

Exemptions

Exemptions may be made in the following cases:

· It is not necessary to document keyboard techniques for elements that simply follow the Windows conventions, such as standard menus and controls.

· Applications and features that are exempt from the keyboard access requirement as described earlier in this section are also exempt from the requirement to document their keyboard access. However, it is strongly recommended that applications document any keyboard access that does exist.

5.
Provide notification of the keyboard focus location

Your application must visually indicate the location of the keyboard focus, and notify other software of this location by moving the system caret or by using Microsoft Active Accessibility™.

If an application is to be used with the keyboard, it must display a visual focus indicator. Exposing this information through the application enables the use of the panning software supported by many display adapters, and accessibility aids such as the Magnifier accessory included with Windows 98 and Windows NT 5.0.

For details on how to expose the keyboard focus, see the Microsoft Windows Guidelines for Accessible Software Design on http://microsoft.com/enable/.

Exemptions

Applications and features that are exempt from the keyboard access requirement, as described earlier in this section are also exempt from the requirement to expose keyboard focus location. However, it is strongly recommended that applications expose the keyboard focus location for any feature that provides keyboard access.

6.
Do not rely on sound alone

Your application should not convey any important information by sound alone. If sound alone is the default method for conveying the information, the application should provide an option to convey this information by other means.

Closed captioning or synchronized highlighting is recommended for all audio and video content that conveys information and is longer than a few seconds. Closed captioning is supported by the Windows Media Player version 5.2 or later. For more information, see the web sites available at http://microsoft.com/enable/ and http://microsoft.com/windows/mediaplayer/.

When the ShowSounds option is selected, the application must provide visual equivalents of any information that is normally provided by sounds alone. If the ShowSounds option is selected when the application starts, the application may ask the user if they want to display these additional visuals.

The user may select the ShowSounds option in Control Panel to advise applications that all information should be conveyed visually rather than relying on audible means. This option is set using the Accessibility Options section in Control Panel. Applications can determine the current value of the ShowSounds option by using the SystemParametersInfo function to query SPI_GETSHOWSOUNDS.

Exemptions

Games are exempt from this requirement, but reference and educational titles will not be exempted. It is strongly recommended that games provide an option to display visual equivalent of any information that is normally conveyed by sound alone.

Applications are not required to display visual equivalents of music or other sounds that convey no information. However, they are required to display a visual indication that such sounds are playing. This display is optional and does not have to be on by default, but it must be on when the ShowSounds option is enabled.

How to Pretest Applications for UI Fundamentals

Microsoft is developing testing tools that will help to automate the verification process for the Logo Program requirement compliance. These tools are expected to be available in the first half of 1999. Please check http://microsoft.com/enable/ regularly for updated information.

To pretest system metrics support:

1.
Open Control Panel, and then open the Display applet.

2. Choose the Appearance tab.

3. Select the Windows Default (extra large) scheme. Apply these settings.

4. Go back into your product and test the major screens, dialog boxes, and controls to ensure that these changes have been instated.

The application should still be usable. Screen elements should be displayed correctly and be compatible with the appearance scheme. For example, ensure that the proper sizes are used for displaying all menu items, title bars, icons and icon titles, window borders, scroll bars, and so on. Text and controls should never overlap each other, nor be truncated inappropriately.

To pretest high-contrast support:

1.
Open Control Panel, and then open the Accessibility Options.

2.
Choose the Display tab.

3.
Select the Use High Contrast option.

4.
Choose Settings and verify that White on Black is selected. Apply these settings.

5.
Go back into your product and test the major screens, dialog boxes, and controls to ensure that these changes have been properly reflected.

6.
Repeat, selecting the Black on White option in step 2.

The application should still be usable. Screen elements should be displayed correctly and be compatible with the appearance scheme. For example, make sure that text contrasts with its background, that graphics on toolbar buttons are distinguishable, that lines are still visible, and that no images or complex backgrounds appear are drawn behind text.

If anything within the window is not displayed using the selected color scheme, verify that the user can adjust the display colors without having to alter the document.

To pretest keyboard access and keyboard documentation:

1.
Exercise the major functions within your application without using a mouse.

2.
Verify that a mouse is not required for any activity.

For example, if a command on a toolbar can only be used with a mouse, make sure that the equivalent command is also available through a menu or through a documented keyboard shortcut.

The product documentation and user interface must make it clear how to carry out a task using the keyboard or it must be readily inferred using knowledge of standard Windows keyboard conventions. If these are not the case, the product fails the requirement to adequately document its keyboard user interface.

3. Verify that all menu items and controls have underlined access keys.

To pretest exposure of keyboard focus:

1.
Use the Magnifier accessory that is included with Windows 98, Windows NT 5.0, and the Microsoft Active Accessibility SDK.

Choose Programs from the Start menu, then choose Accessories, then choose Accessibility, and then choose Magnifier.

On Windows 95, you must install the Microsoft Active Accessibility SDK, then, on the Start menu, choose Programs, and then choose Microsoft Active Accessibility, and then choose Magnifier.

2.
Navigate through your application using the keyboard, making sure that Magnifier accurately tracks and displays the area with the keyboard focus. In particular, verify that Magnifier:

· Shows the correct focus location when you navigate or type within a document, text field, or table.

· Shows the correct focus location when you navigate in menus, dialog boxes, toolbars, list boxes, or other controls.

· Shows the correct focus location when you extend a selection in text or in a multiple-selection list box, list view, or tree view.

· Shows the correct focus location when you return to your application from a dialog box, menu, or another application.

To pretest use of sounds:

1.
Open Control Panel, and then open the Accessibility Options.

2.
Choose the Sounds tab.

3.
Select the ShowSounds option. Apply these settings.

4. Go back into your product and test the major functions. Notice any sounds that are played that do not have equivalent visual feedback. In particular, look for animations and audio or visual clips.

To pretest support for system font and resolution changes

1.
Open Control Panel, and then open the Display.

2. Choose the Settings tab.

3. Choose the Advanced button.

4. Select the Windows Default (extra large) scheme. Apply these settings.

5. Go back into your product and test the major screens, dialog boxes, and controls to ensure that these changes have been properly reflected.

The application should still be usable, and screen elements should be displayed correctly and be compatible with the appearance scheme. For example, make sure that the proper sizes are used for displaying all menu items, title bars, icons and icon titles, window borders, scroll bars, and so on. Text and controls should never overlap each other, nor be truncated inappropriately.

Chapter 7

Windows Installer

These guidelines define the Gold Logo Program requirements for implementing Windows Installer. These requirements are defined to ensure that the application can be easily deployed in a corporate environment.

Summary of Windows Installer Requirements

Requirements

1.

Provide a Windows Installer package that passes validation testing

2.

Observe rules in componentization

3.

Ensure that each file appears in at most one component

4.

Ensure that the Windows Installer package fully supports advertising

5.

Ensure correct uninstall support

Rationale

When the operating system manages application setup and configuration, it gives your application the following abilities:

· Robust, self repairing installations

· Ongoing component management

· Centralized deployment, update, and uninstallation over a network

· Installation on locked-down systems

Windows Installer enables all of this functionality using data packages that describe application configurations. It exposes APIs that can be used to access and adjust the configuration of the application dynamically.

Customer Benefits

End users gain these benefits when your application uses Windows Installer:

· Fewer problems during application setup, including the ability to roll back to the earlier installed version without error if the installation is not completed, for example, if there is a network failure

· Components that can be installed on an as-needed basis if they were not included during the initial installation.

System administrators in corporate environments also gain these benefits when your application uses Windows Installer:

· A Windows Installer package (.msi file) allows the administrator to easily determine what files, and what versions of those files, are being installed.

This is especially a benefits for corporations that maintain a list of “known good versions” of shared DLLs and allow installation of applications that require a shared DLL only on the basis of this list.

· The Windows Installer Management APIs can be used with management tools that allow files and application integrity to be remotely checked.

· Application installation more readily supports roaming users.

· Application installation more readily supports mass deployment in organizations.

How to Comply with Windows Installer Requirements

This section presents the specific requirements for implementing a Windows Installer package, plus the related installation requirements.

Other requirements in this section describe the rules that must be followed when grouping and updating resources in Windows Installer Components (WIC).

1.
Provide a Windows Installer package that passes validation testing

The current version of the Custom Validator tool is available at…

URL TBD

The Microsoft Platform SDK documents the related APIs and provides a detailed example for implementing a Windows Installer package.

2.
Observe rules in componentization

The componentization rules ensure that the removal of one program does not harm any other programs on the system. In addition to safe removals, the Windows Installer will correctly remove all the resources connected with that program, leaving no orphaned resources behind.

The rules governing the componentization process are:

· A single resource can never be shipped as a member of multiple WICs, even across companies, product versions, and individual products.

· All files in a given WIC must be installed to the same directory. The means files in different directories must be in different WICs.

· All files that are the targets of advertisable shortcuts must be the KeyPath of a WIC. This means there can only be one advertised file per WIC, although many different shortcuts can point to that single file.

· COM servers must be the KeyPath of a WIC. This means there can only be one COM server per WIC. A single file, which can only be in one WIC, may serve multiple CLSIDs. However, two files serving different CLSIDs must be in separate WICs.

· Extension servers must be the KeyPath of the WIC. This means there can only be one Extension server per WIC.

3.
Ensure that each file appears in at most one component

A given file must appear only in a single component. When a new component code is needed, all files in that component must be assigned new names.

4.
Ensure that the Windows Installer package fully supports advertising

“Advertisement” is when an application’s files are shown as being available, but are not actually installed. Advertising allows the application to be deployed using application deployment, where application features are installed “just in time.”

The following tables must be populated with advertising data: shortcut, class, extension, icon, MIME, progID, TypeLib, and Verb.

5.
Ensure correct uninstall support

The Windows Installer package must correctly and fully uninstall. In a package that follows component rules and uses only native Windows Installer actions to modify the computer, this is capability is provided automatically.

Note: Windows Installer's transacted install feature, also known as "Automatic Recovery" and "Rollback," only restores the user's computer to its prior state if a single install fails or is cancelled. Once the install completes successfully, all backup data and files are deleted. Uninstall of the product at that point will not replace overwritten registry entries with the previously existing values.

How to Pretest Applications for Windows Installer Requirements

A regularly updated tool is provided for testing Windows Installer packages.

To pretest a Windows Installer package:

· Use the Custom Validator tool provided in the Microsoft Platform SDK to check the validity of the package.

For an up-to-date version of this tool, see…

For validation failures, the tool provides information about the correct SDK references for implementation.

URL TBD

To pretest correct setup actions:

1.
Use Windows NT 5.0 application deployment tools to publish the application. Verify that all activation paths work correctly.

2.
Verify that when the product CD is inserted, the user is given an opportunity to set up the software.

3.
Verify that all non-hidden files have an icon and file type in the Windows Explorer shell.

4.
Test old clients with the new code.

To pretest uninstallation:

1.
Take a snapshot of a computer, install the application, uninstall the app, take another snapshot.

2.
Verify that the snapshots are the same.

Chapter 8

User Data and Application Settings

These guidelines define the Gold Logo Program requirements for supporting system policies and user profiles to ensure that the application can be managed in the corporate environment to help lower TCO.

Summary of User Data and Application Setting Requirements

Requirements

1.

Support all system policies

2.

Enable policies for the application

3.

Enable administrators to control application policies

4.

Store user data in the user profile

5.

Default to the My Documents folder

6.

Support UNC and LFN paths everywhere

7.

Use Win32 APIs instead of environment variables in paths

8.

Place shared DLLs in the application’s directory

9.

Hide and protect application files

10.

Use proper access rights when opening registry keys

11.

Correctly accommodate unknown user access rights

12.

Use Synchronization Manager

Rationale

Windows NT 5.0 provides an underlying infrastructure to provide administrators with the control to reduce TCO in their environment. Customers will see the greatest benefit with applications that take advantage of this infrastructure. These requirements are designed to provide guidelines for writing applications that reduce TCO for customers by using this infrastructure.

By properly implementing user profiles in conjunction with Group Policy, the administrator gains the ability to “state a wish” about the state of a group of desktops and have that “wish” carried out on multiple desktops without further intervention. It delivers the ability to mandate Desktop and Application Settings, and to efficiently install applications, so that users no longer have the need or ability to change their system configuration.

For an example, the default save location for a user could be set to a network folder based upon the organization or group of the user.

Customer Benefits

· Users can easily back up just their documents and settings without having to backup application and operating system files

· Multiple users can share a single computer, both at home and in the workplace

· A single user can roam to multiple computers, maintaining their own documents and settings from one computer to another.

· Administrators can easily manage corporate desktops.

Ultimately, this means reduced TCO for customers.

How to Comply with User Data and Application Setting Requirements

Policy Requirements

1.
Support all system policies

Existing and new Windows NT 5.0 system policies are defined so that administrators can exert control over specific aspects of computer and user settings and capabilities. If an application bypasses even one of these, that administrative control will be compromised, leaving the administrator with a potentially unknown breech.

Therefore, if your application offers any system functionality, it is required for it to adhere to all of the system policies. All system policies reside in the \Software\Policies\… tree or the Software\Microsoft\Windows\CurrentVersion\Policies\ tree (in either the HKCU or HKLM hive). These are secure and can only be modified by the system or users in any “Administrators” group. For a complete list of the system policies, see the .adm files that reside in the %systemroot%\inf directory of Windows NT.

For example, the administrator can prevent the user from using the Run command by modifying the following key:

HKEY_CURRENT_USER\Software\\Microsoft\Windows\CurrentVersion\Policies\Explorer

where:

· Registry Value: NoRun

· Registry Data: REG_DWORD (Off = 0 or value is removed, On = 1)

In this case, if an application has a feature that also allows the user to effectively “run” another application, such as MSINFO, then before allowing this function, the application should check the registry key listed in this section to see whether the administrator has disabled that function. If so, the application should display the message: “The system administrator has disabled this function.” And then return control to the application.

CAUTION: Use ShellExecute() instead of CreateProcess(). One of the system policies that administrators have is a list of approved applications to run. This list is checked inside of ShellExecute, not CreateProcess. If an application calls CreateProcess, the call will succeed regardless of what the administrator states in Policy.

2.
Enable policies for the application

Enable policies for the aspects of your application that administrators would want to control for groups of users. These must take the form of registry settings located in either HKCU (preferred) or HKLM in the \Software\Policies tree.

Determine what defaults the administrator might want to change for a given set of users, and offer a policy for each default. A potential policy could be a setting that is defaulted from the INF file during install. Others may also be appropriate.

Then use the following examples as guidelines for enabling your application to be controlled by the administrator. By following these examples, you enable the administrator to do the following for groups of users:

· Mandate particular application behavior

· Change default settings

When used in an Active Directory/Group Policy environment:

· The policies will not mark a user’s profile with a policy setting. See the Whitepaper.asp listed in References for more details.

· The users and administrative default settings will be preserved so that when a policy is removed, the users settings and the administrative default settings will take effect.

Example 1. One way to handle this would be to create three separate registry keys/values.

· The mandated setting in:

HKCU\Software\Policies\CoName\AppName\Version\Settings\RegValue

· The user’s setting in

HKCU\Software\CoName\AppName\Version\Settings\RegValue

· The administrator’s default setting in:
HKCU\Software\Policies\CoName\AppName\Version\SettingsDefault\RegValue

Then read each key/value as follows. Check Mandated Setting first. If this is a non-NUL value, use it. Otherwise, read User Setting. If this is a non-NUL value, use it. Otherwise, read Administrators Default Setting. If this is a non-NUL value, use it. Otherwise, read the application’s default from the application.

Example 2. A second method would be to create these three registry keys.

· The administrators default setting or mandated setting in:

HKCU\Software\Policies\CoName\AppName\Version\Settings\RegValue

· A toggle for the behavior of the policy setting in:

HKCU\Software\Policies\CoName\AppName\Version\Settings\RegValue_Z (Mandated, Default)

· The users setting in:

HKCU\Software\CoName\AppName\Version\Settings\RegValue

The first two values are paired and the second has appended a “_Z” for its value. This allows the values to reside in a sequential location in the registry, allowing faster access. Processing these keys/values is as follows: First, read the toggle. If the toggle is set to “Mandated,” read and use the data from the administrators setting. If the toggle is set to default, read the user setting: if it is non-NUL, use it. Otherwise, use the administrator’s setting.

The following code excerpt presents the most complete, flexible, and configurable way to support policy, and it shows how to determine whether a particular feature should be enabled.

#define KEY_NAME TEXT("Software\\Microsoft\\ProductName\\Component")

#define POLICY_KEY TEXT("Software\\Policies\\Microsoft\\ProductName\\Component")

#define ENABLE_FEATURE TEXT("EnableFeature")

BOOL ShouldFeatureBeEnabled (void)

{

 HKEY hKey;

 DWORD dwType, dwSize;

 BOOL bEnableFeature;

 //

 // Set some reasonable default value in case nothing is in the registry

 //

 bEnableFeature = TRUE;

 //

 // First, check for user preference

 //

 if (RegOpenKeyEx (HKEY_CURRENT_USER, KEY_NAME, 0,

 KEY_READ, &hKey) == ERROR_SUCCESS) {

 dwSize = sizeof(bEnableFeature);

 RegQueryValueEx (hKey, ENABLE_FEATURE, NULL, &dwType,

 (LPBYTE) &bEnableFeature, &dwSize);

 RegCloseKey (hKey);

 }

 //

 // Second, check for computer preference

 // 1) More important than a user preference

 // 2) Usually set by the local admin for one specific machine

 //

 if (RegOpenKeyEx (HKEY_LOCAL_MACHINE, KEY_NAME, 0,

 KEY_READ, &hKey) == ERROR_SUCCESS) {

 dwSize = sizeof(bEnableFeature);

 RegQueryValueEx (hKey, ENABLE_FEATURE, NULL, &dwType,

 (LPBYTE) &bEnableFeature, &dwSize);

 RegCloseKey (hKey);

 }

 //

 // Third, check for user policy

 // 1) More important than any machine or user preference

 // 2) Usually set by a domain admin for a group of users

 // 3) Applies to user regardless of which machine they logon to

 //

 if (RegOpenKeyEx (HKEY_CURRENT_USER, POLICY_KEY, 0,

 KEY_READ, &hKey) == ERROR_SUCCESS) {

 dwSize = sizeof(bEnableFeature);

 RegQueryValueEx (hKey, ENABLE_FEATURE, NULL, &dwType,

 (LPBYTE) &bEnableFeature, &dwSize);

 RegCloseKey (hKey);

 }

 //

 // Fourth, check for machine policy

 // 1) Most important

 // 2) Set by local and domain admins

 // 2) Usually applied to groups of machines

 // 3) Great for lab situations where the lab needs to have the final

 // say of policy for every user regardless of who they are

 // eg: No one in this lab should have a Run command

 //

 if (RegOpenKeyEx (HKEY_LOCAL_MACHINE, POLICY_KEY, 0,

 KEY_READ, &hKey) == ERROR_SUCCESS) {

 dwSize = sizeof(bEnableFeature);

 RegQueryValueEx (hKey, ENABLE_FEATURE, NULL, &dwType,

 (LPBYTE) &bEnableFeature, &dwSize);

 RegCloseKey (hKey);

 }

 //

 // Return the result

 //

 return bEnableFeature;

}

3.
Enable administrators to control application policies

There are two methods available to accomplish this. The first is to create a Microsoft Management Console (MMC) snap-in extension to the Group Policy Editor, available under Windows NT 5.0 only. This allows for the most flexibility and control over the administrator's view of setting the policies. See the Microsoft Platform SDK for information about how to do this.

The second method is to create administrative template (.adm) files, which provide a convenient and inexpensive method for application developers to offer policies to administrators.

Your application must query a registry key to see whether it should make its application-specific policies available. Default behavior should be that if the registry key does not exist, there is no restriction.

· Create and use registry key/values in the Policies tree, following the Company Name, Application Name, Version of App, naming convention.

· For Hkey_Current_User:

HKCU\Software\Policies\CompanyName\AppNameVersion\

· For Hkey_Local_Machine:

HKLM\Software\Policies\CompanyName\AppNameVersion\

This provides your keys and values a secure place in the registry. This means that only local administrators, including the mechanisms for delivering Group Policy, will be able to modify anything in the tree. Following the naming convention helps maintain uniqueness, understandability, and discoverability.

· Only those registry entries that are not administrator-controlled may continue to live under the key \Software\CompanyName\AppNameVersion. This is where the user’s preferences should be located.

· Use the "Explain" tag to offer an explanation to the administrator for what the policy does.

Complete details on the .adm language is available in the Microsoft Platform SDK and the Group Policy Whitepaper that is listed in the References later in this chapter..

User Data Requirements

4.
Store user data in the user profile

Applications should store user documents and application settings in the user profile. In Windows NT 5.0, user profiles are stored in the %SystemDrive%:\Documents and Settings folder.

User Profile and All Users Profile. Each user of a computer has a personal user profile. Throughout this document, the term “user profile” is used to represent the user-specific profile that is in %SystemDrive%:\Documents and Settings. There is also an All Users profile for storing computer-specific settings and documents shared by all the users of the computer. This is stored under %SystemDrive%\Documents and Settings that should be used to store data that is available to anyone using the computer.

If the user explicitly saves and opens their file, the default folder should be the “My Documents” folder. Any file type being stored in the My Documents folder should be registered so that the proper application-specific icon appears on the document.

Application-specific Folders. Applications should use the same hierarchy under Application Data and Templates as is used in the registry:

[User Profile]\

Application Data\

[company name]\

[product name]\

[version]\

[file or folder]

Applications should call SHGetSpecialFolder with the appropriate flag and they should append [company name]\[product name]\[version] to the returned path. Because the user explicitly saved Templates, Pictures, and Documents, no application-specific hierarchy should be created in these folders.

Applications should use the registry and the Application Data folders for storing read/write application data and configuration files. The registry, however, is used for storing small data and for policy settings. Applications should store larger, file-based data in the Application Data folder. For example, Internet Explorer’s Temporary Internet Cache is stored within the user profile, and not in the registry.

Recommended Locations For Typical Application Data

Data
Location

MRU List
UserProfile\Recent and UserProfile\Application Data

User-created Documents
UserProfile\My Documents

Save as HTML output
UserProfile\My Documents

User-created Images
UserProfile\My Documents\My Pictures

Custom Template
UserProfile\Templates

View settings (Toolbars)
UserProfile\Application Data

Custom Lists or Functions (Dictionary entries, Macros, saved database queries)
UserProfile\Application Data

Cached Transient Data (application tips from Internet)
UserProfile\Local Settings\Application Data

Downloaded Add-ons
All Users\Application Data
or UserProfile\Application Data

Environment settings
(Save options, Font substitution)
Registry

Reminders
Registry

Application Assumptions and Guidelines. Applications should assume the following:

· Files may be shared in both UserProfile\Application Data and UserProfile\My Documents. Multiple computers may use them simultaneously in different versions of the application. The data may also be used by multiple applications, for example, applications in a productivity suite. Applications should only get a write exclusive on the file when necessary. For example, applications using CreateFile should only specify GENERIC_WRITE when a write is required, but they should always set FILE_SHARE_READ.

· Paths returned by SHGetFolderPath may have long filenames, UNC paths, and DNS paths. In the future, they may have URL addresses.

· Any user or application can write into the All Users\Documents and All Users\Application Data folders. Writing into any of the other folders in the All Users profile requires administrative privileges.

· Any location other than those described in this document may be locked down and inaccessible to a user. Applications should assume that the Windows directory is read-only.

Reference

Microsoft Windows NT Resource Kit from Microsoft Press contains extensive information about user profiles and policies.

5.
Default to the My Documents folder

When an application defaults to the My Documents folder, it helps users to keep all of their data files in a single, convenient location. By default, the standard file dialogs already do this. This process should be able to be overridden using policy so that an administrator can point to a shared network location.

Pass CSIDL_PERSONAL to ShGetSpecialFolderLocation() or pass a NULL initial path to the common dialogs.

6.
Support UNC and LFN paths everywhere

To support running the application from a network and to support user profiles, an application must be able to handle paths that follow UNC and contain long file names (LFNs).

Do not assume that paths will start with <n>:\.

7.
Use Win32 APIs instead of environment variables in paths

The following list shows the solutions your applications should use for common environment variables used under Windows NT 5.0 to specify locations of special folders:

Variable
Gold requirement

%Temp%
Use GetTempPath() instead

%SystemRoot%
Do not write files here

%SystemDrive%
Do not write files here

%ProgramFiles%
Avoid writing files here

%UserProfile%
Use GetSpecialFolderPath() instead

Use the API GetTempPath() to locate the folder where temporary files should be stored. Note that this folder is writeable and is available for each user in Windows NT 5.0.

Never hard code a path to these folders between executions of your application, because the locations vary from computer to computer, known as roaming, and can be changed by the user. Also, be prepared to handle long file names, UNC names, and Domain Name System (DNS) paths for all of these paths.

Tip: Determine whether your application is appropriately using application policy for the settings it places in HKEY_Local_Machine in the register. These settings give greater flexibility to system administrators; they will be stored in a secure part of the registry.

8.
Place shared DLLs in the application’s directory

Place shared DLLs in your application’s directory (preferred) or in a known shared location specific to your company. For example:

%ProgramFiles%\Acme\Shared Files

Do not write DLLs to %SystemRoot% or \System32. This will avoid problems such as:

· Replacing a newer file with an older one

· Incompatible DLLs with the same name

· Installing in c:\program files instead of the real program files folder

· Placing application DLLs in the system folders

· Installing user files in application directory or system

· Scattering application files all over the disk

9.
Hide and protect application files

Simplify the user’s experience by hiding application files that do not need to be seen. All files that are not hidden should have a registered type, providing, at a minimum, an icon and a description.

To cut down on the possibility of files becoming damaged or deleted, install any file that is not modified as a read-only file. In addition, files which the user will not need to interact with should be installed as hidden files.

10.
Use proper access rights when opening registry keys

On Windows NT, access rights are enforced on registry keys according to the permissions the application requests and according to the permissions set on the keys. In many cases, non-administrators do not have access rights to all registry keys. In particular, KEY_ALL_ACCESS will fail in many cases, particularly for keys under HKEY_LOCAL_MACHINE. This is important because non-administrators should be able to install and use your product on Windows NT.

If you create or open registry keys, you should use RegOpenKeyEx or RegCreateKeyEx, specifying the minimum access mask that you need to use. For example, if you only need to query values on the key, KEY_QUERY_VALUE is sufficient.

Requesting KEY_ALL_ACCESS when trying to open the CLSID branch of the registry during DLL self-registration (DllRegisterServer) is also likely to fail if the current user is not an administrator.

It should be a red flag if you need to use KEY_ALL_ACCESS when opening registry keys to read/modify.

11.
Correctly accommodate unknown user access rights

Do not assume that users are administrators, and do not assume there will be write access to the entire file system or registry

In general, users might not have write access outside of the user profile.

Handle access-denied errors gracefully. As part of this effort, remember that %Temp% is now per user and is always writeable.

Reference

For more information about ADM files, see:

· Microsoft Press Resource Kits for Windows NT and for Windows 98.

· WhitePapers.asp on http://www.microsoft.com/NTServer/Basics/Future/WindowsNT5/.

· VC++ 5.0 help files under Platform SDK/Setup and Systems Management/System Policies/Using the System Policy Editor/Template File.

12.
 Use Synchronization Manager

The Synchronization Manger provides a centralized place for the end user to synchronize all personally-owned offline data. It provides a common UI that a mobile user can use to prepare a computer for use away from a network. The Synchronization Manager provides a open API for applications such as Outlook™ 2000, Internet Explorer 5.0, SQL Server 7.0, and others to plug into it.

More details forthcoming in next draft.

How to Pretest Applications for User Data and Application Setting Requirements
This section provides some brief guidelines for pretesting your application’s support for user profiles and system policies.

To pretest correct storage of user data and defaults:

1.
Run the application, choose user preferences, create files, and so on.

2.
Roam to another computer, and run the application again. All preferences and data should be available.

3.
Verify that file\save actions default to the correct folder.

4.
Test the application running from a network share and with data stored on a network location.

Chapter 9

OnNow/ACPI Support

These guidelines define the Gold Logo Program requirements for ensuring that the application can participate in system-wide power management.

Summary of OnNow/ACPI Requirements

Requirements

1.

Respond to sleep requests from the operating system

2.

Respond to sleep notifications properly

3.

Handle non-critical wake notifications without losing data

4.

Handle critical sleep and wake notifications properly

5.

Use SetThreadExecution() to indicate a busy application

6.

Reconcile multi-user edits on network files

Rationale

Applications must participate in system-wide power management decision-making to ensure error-free handling of power down and power up scenarios. Applications must be able to put themselves to sleep on system or user request to support a low-power state, and then they must respond to wake notifications, preserving data appropriately.

In this chapter, the term “sleep” means that the system is on standby or is in hibernation. To the application, standby and hibernation are the same. The difference occurs in how the operating system determines what gets powered down. The application does not need to provide any additional feedback to make this determination.

The OnNow design initiative is a set of design specifications which, when applied to system hardware and software applications, enable a PC to deliver the instantly available capabilities consumers expect from TVs, VCRs, stereos and other appliances.

Reference

For more information about the OnNow design initiative, see the web site available at http://www.microsoft.com/hwdev/onnow.htm.

Customer Benefits

· OnNow/Advance Configuration and Power Interface (ACPI) reduces power consumption, whether power comes from a wall outlet or a battery. When the computer is turned "off," it goes into a lower power state and can then be wakened by a device in the system, such as the network card, modem, or keyboard.
· The PC is consistently available to the user because it can rapidly return from a low power state to a fully-functional state. For example, network administrators can manage computers late at night, and home users can receive faxes, without being there to turn on and tend to the machine.

· Customers can control what happens when their PCs power down in a way that is easily understood and predictable.

How to Comply with OnNow/ACPI Requirements

This section defines the specific OnNow/ACPI requirements for applications.

1.
Respond to sleep requests from the operating system

Your application must always accept a sleep request in order for the operating system to go into a lower power state. Whenever the application receives a WM_POWERBROADCAST message with a wParam value of PBT_APMQUERYSUSPEND, the application must get ready to go to sleep by ensuring that all outgoing operations are completed and no data loss will occur on resumption. The application must then return a value of TRUE for this message.

Exceptions

1.
The application may display a dialog box and enlist the user’s help if both of the following conditions are true:

· The UI bit is set in the WM_POWERBROADCAST message.

· Putting the computer to sleep will cause user data loss or corruption.

The application may return a value of BROADCAST_QUERY_DENY in response to the WM_POWERBROADCAST message if the user answers “no” when the application warns of a loss of data that might occur if the computer is put to sleep. Examples include an indexing or database query that cannot be interrupted, but is expected to finish in a short period of time. This example will result in the operating system canceling the sleep request and the application being notified with a WM_POWERBROADCAST PBT_APMQUERYSUSPENDFAILED message.

The dialog confirmation box must have a built-in time limit of about 30 seconds or less, so that if the user does not respond within a given period of time, the application will once again attempt to go to sleep.

2.
If the UI bit is not set and if the application has file handles open across the network which might lead to loss of data, the application may refuse the sleep request if it is complex or impossible to design a mechanism by which the application can recover using a local temporary file upon resuming.

In the instances where applications have file handles open across the network and a sleep request is received, some special handling may be needed. An example of this is the case when a user may put a computer to sleep and then undock it, or put a computer to sleep and unplug the network card.

To handle these situations, it is recommended, but not required, that the application do the following: If the user has not explicitly requested that the modified data be saved to the open file, the application should save a copy of this data in a temporary file on local non-volatile media. The application will close all file handles at the time of suspending. When resuming, if the network is not present, the application should prompt the user of this failure and then offer to allow the user to continue to work by restoring context from the copy of the temporary file saved on local media.

Note: If the client-side caching service is running on the computer, it will provide exactly this functionality. In this case, the call to open a network file in the application will succeed because client-side caching will provide data from a local copy of the file.

In all other cases, the application may not refuse a sleep request if the UI bit is not set. This situation occurs, for example, when the computer is going to sleep as a result of a user closing the lid on a laptop, and then cannot respond to any UI messages. In this case, the application must attempt to save data, get ready to stop all activity, and return TRUE in response to the WM_POWERBROADCAST/PBT_APMQUERYSUSPEND message.

2.
Respond to sleep notifications properly

Once all applications have accepted the sleep request, the operating system will send a WM_POWERBROADCAST / PBT_APMSUSPEND message. In response, your application must allow the hardware to completely power down by taking the appropriate actions. These actions include:

· Saving all data and closing all open files, including network files

· Pausing sound

· Pausing all play in games

· Restoring any drivers that the application modified to their initial state

Although your application is required to prevent data loss, it is up to each individual application to determine the appropriate implementation. We do, however, advise that your application do so in the following manner:

· Flush any user data to local non-volatile storage that will persist after the power supply is shut down.

· Write user data to temporary storage when the user has not requested that the original file be overwritten.

Note: In some circumstances, the sleep request may be canceled. If this occurs, the operating system follows the WM_POWERBROADCAST/PBT_APMQUERYSUSPEND message with WM_POWERBROADCAST / APM_QUERYSUSPENDFAILED message.
In this case, the application should restore all its data to a working state and continue all operations normally.

3.
Handle non-critical wake notifications without losing data

The application must be able to handle non-critical wake notifications without losing data and return the application to an unambiguous state.

Applications that were open when the computer went into the sleep state should be open when the system wakes. The operating system will notify the applications with a WM_POWERBROADCAST / PBT_APMRESUMESUSPEND message when the computer wakes up from sleep. The applications should attempt to restore all context to the state that existed just before the computer went to sleep. If the data cannot be fully restored, the application should notify the user, and it may seek the user’s aid in restoring data to a state acceptable to the user.

The application must attempt to recover back to a stable state. The application must not stall, cause the system to crash, destabilize the system, corrupt existing data files, or knowingly lose data without notifying the user.

It is not required for games to restore context to the point when the computer went to sleep, but we recommend that the state is restored to a point that provides a good user experience. The game still must follow all the other robustness requirements—no system crashes and so on.

4.
Handle critical sleep and wake notifications properly

Applications must respond to critical wake notifications at least as well as they recover from power loss.

In certain situations, the operating system may need to perform a critical sleep operation—for example, if battery capacity is critically low, or if the computer temperature is critically high and must be shut down to prevent hardware damage. A user may also initiate a critical sleep in an urgent situation—for example, the user has to board a plane and must shut the computer down instantly.

In cases of critical sleep, the applications will not be notified by the operating system of the impending sleep event. Your application will not get the opportunity to perform any actions defined in the previous requirements.

When the computer is wakened, the operating system will indicate in its wake notification whether the shut down was critical. The application should not crash and should wake to a stable state—no stalls, crashes, or corruption of files that were not opened by the application. Data may be lost, but the application should notify the user of the data loss that occurred.

5.
Use SetThreadExecution() to indicate a busy application

Applications which have long operations that need to continue running even though the PC appears idle must use the SetThreadExecution() API function to mark the computer as busy. When marked as busy, the operating system will not send sleep requests as a result of the computer being idle.

The applications should use the ES_CONTINUOUS flag only for cases when the application is performing an operation which, if interrupted, might result in a loss of data. Performing a query and an update of a database is one such case. In all other cases, the applications should only use the ES_SYSTEM_REQUIRED flag. See the Microsoft Platform SDK for details.

Please note that using the SetThreadExecution() call does not stop explicit sleep requests made by the user; these requests must still be handled as specified in all the other requirements in this chapter.

Examples of applications that need to use this function are video playback or presentation applications to keep the display on. Such applications should use the SetThreadExecutationState() API with the ES_DISPLAY_REQUIRED flag set to prevent the operating system from turning off the display.

6.
Reconcile multi-user edits on network files

If an application accepts a sleep request while network file handles are open, edit conflicts can occur that would not normally happen in non-sleep/wake scenarios.

When a computer is placed in a sleep state, locks on network files may be released. This allows other users to edit a file that would otherwise remain locked. When your application responds to a wake notification and tries to reopen file handles in such cases, it must (in sequence):

1.
Detect that someone has modified or has locked one or more of the files.

2.
Alert the user to this condition.

3.
Allow the user to keep working while other users have the original files locked.

4.
Offer to save user’s work by saving the old file with user’s modification to another directory and with another file name. It is recommended, but not required, that in the interest of providing a better user experience, applications add functionality to assist the user to merge the differences between the two versions of a file.

How to Pretest Applications for OnNow/ACPI Support

This section presents pretesting guidelines for OnNow/ACPI requirements.

To pretest productivity applications for OnNow/ACPI compliance:

· Open a file on a local hard disk, edit it—don't save—and put the computer to sleep, and then wake the computer. Verify that the application continues to run, the file can be saved, and so forth.

· Open a file on a hard disk in a docking station, edit it—don't save—and put the computer to sleep, undock the computer, and then wake the computer. Verify that the application correctly informs the user of the problem and leads the user through steps to correct the problem.

· Open a file on the network, edit it—don't save—and put the computer to sleep, wait a few minutes for the network connection to time out, and then wake the computer. Verify that the application continues to run, that the file can be saved, and so forth.

· Open a file on the network, edit it edit it—don't save—and put the computer to sleep. Modify the file on the network from some other computer and make modifications so that some of them conflict with the modifications made previously on the first computer, and some of them do not conflict. Save the file. Wake the first computer. The application should correctly detect that the file was modified and handle the non-conflicting modifications automatically and prompt to user to reconcile the conflicting modifications.
To pretest event-handling applications for OnNow/ACPI compliance:

1.
In the Power control panel, set the system idle time as low as possible.

2.
Start the application and its event handling feature.

3.
Put the computer to sleep using the Sleep button or the Start menu.

4.
Start an event that will take longer to process than the system idle time. If necessary, start a series of such operations so that the computer continues to stay busy.

5.
Verify that the computer does not go to sleep while the event is being processed and that, after the event has been processed, the computer goes to sleep immediately.

To pretest presentation applications for OnNow/ACPI compliance:

1.
In the Power control panel, set the system idle time as low as possible.

2.
Start the application and play a presentation.

3.
Wait for a time longer than the system idle time, and verify that the computer does not go to sleep and that the display does not go blank during that time

To pretest applications that may lose data if the computer is put to sleep at a particular time:
1.
Start the application and get it to a point where it starts operations that might corrupt data if interrupted.

2.
Press the power button to put the computer to sleep

3.
Verify that the application puts up a dialog box to prompt the user about possible loss of data. There are several cases to be tested under this circumstance:

· Respond “NO” to the dialog box and verify that the computer doesn’t go to sleep and that the application continues as normal without losing any data.

· Respond “YES” to the dialog box and verify that the computer goes to sleep. Wake the computer and ensure that the computer doesn’t hang or cause the operating system to crash; also ensure that the application doesn’t hang or crash, but that it notifies the user of any possible data loss and attempts to recover all possible data.

· Do not respond to the dialog box, then ensure that the application times out correctly and attempts to go to sleep again at the end of the time period.

To verify response to critical sleep requests:

1.
Click on the “start” button and select the “standby” option while holding down the CTRL key. This will force a critical standby to occur.

2.
Wake the computer by pressing the power button. Verify that your application does not cause any destabilizing behavior such as hanging or crashing, and that it attempts to recover all possible data.

Appendix A

Checklist for Logo Program

Application Requirements for Basic Logo

Chapter 3 Windows Fundamentals

1.
Provide only 32-bit components
10
2.
Query the system for folder names
11
3.
Support informational keys in the registry
12
4.
Do not add to Win.ini or System.ini
14
5.
Ensure stability and functionality under Windows
14
6.
Perform Windows version checking correctly
14
7.
Support autoplay of compact discs
14
8.
Accommodate Logo requirements in distribution of suites and multiple
product versions
14
9.
Test software drivers that are shipped with applications
15
Chapter 4 Application Install and Uninstall

1.
Check availability and access to resources before install
17
2.
Provide the appropriate default install location
18
3.
Do not overwrite files with older versions
18
4.
Refcount all shared application files during installation
18
5.
Provide and register a fully automated uninstaller
19
6.
Decrement the count on shared application files during uninstall
19
Chapter 5 Application Migration

1.
Migrate correctly upon upgrade to Windows NT 5.0
21
Application Requirements for Gold Logo

Chapter 6 User Interface Fundamentals

1.
Support standard system size, color, and input settings
26
2.
Ensure compatibility with the High Contrast option
27
3.
Provide keyboard access to all features
29
4.
Document the keyboard user interface
29
5.
Provide notification of the keyboard focus location
29
6.
Do not rely on sound alone
30
Chapter 7 Windows Installer

1.
Provide a Windows Installer package that passes validation testing
34
2.
Observe rules in componentization
34
3.
Ensure that each file appears in at most one component
34
4.
Ensure that the Windows Installer package fully supports advertising
35
5.
Ensure correct uninstall support
35
Chapter 8 User Data and Application Settings
1.
Support all system policies
37
2.
Enable policies for the application
37
3.
Enable administrators to control application policies
40
4.
Store user data in the user profile
40
5.
Default to the My Documents folder
42
6.
Support UNC and LFN paths everywhere
42
7.
Use Win32 APIs instead of environment variables in paths
42
8.
Place shared DLLs in the application’s directory
43
9.
Hide and protect application files
43
10.
Use proper access rights when opening registry keys
43
11.
Correctly accommodate unknown user access rights
43
12.
 Use Synchronization Manager
44
Chapter 9 OnNow/ACPI Support

1.
Respond to sleep requests from the operating system
46
2.
Respond to sleep notifications properly
47
3.
Handle non-critical wake notifications without losing data
47
4.
Handle critical sleep and wake notifications properly
47
5.
Use SetThreadExecution() to indicate a busy application
48
6.
Reconcile multi-user edits on network files
48

Glossary

AutoPlay Denotes the behavior of automatically launching a program immediately after inserting a CD-ROM into the drive.

Componentization Process by which resources are grouped into Windows Installer Components.

Core Operating System Files Also called core components. Core operating system files are defined as operating system DLLs that application developers depend on for the proper functionality of their applications. Reverting to an older version or to an incorrectly implemented version can break many third-party applications.

In general terms, the core components are USER, GDI, and KERNEL. Core components are files that are installed by the operating system during a full installation, or files that are considered operating-system upgrades (for example, DirectX, Direct3D). This includes such things as DLLs that are installed by applets. This list is dynamic.

For a current list of core components for Windows NT and Windows 98, see http://www.microsoft.com/windows/winlogo/developer/

Extension server Executable that is associated with a file extension.

Graceful Recovery Does not crash the operating system (GPF or blue screen). Dialog box or other visual and audio cue appears informing the user that the functionality is not available on X version of Y operating system. User is not required to close the application, and can continue to use the other functionality.
Modularization Process by which Windows Installer components are grouped into Merge modules and dependencies/exclusions are defined between merge modules.

Non-File-Based Application A non-file-based application is one that is not primarily used to create, edit, and save files (although file operations may be common ancillary tasks).

Resources In Windows Installer, files (as defined by the filename and install location), registry keys, shortcuts, and anything else that needs to be installed/uninstalled to the computer.

Shared Application Files Also called shared components. Any files that are installed by an application but might be shared by multiple applications. Shared application files are usually DLLs, but can be executables or any other file type. These must be refcounted unless they are core operating system files or installed in the application’s own directory.

Software Policy Registry based Policy, known as System Policy in Windows NT 4.0.

Suite vs. Product A suite is a collection of programs typically denoted by more than one shortcut on the Start menu. A product can be a suite or a single executable. The final determination of whether or not a product is a suite will be made by Microsoft and VeriTest.

Win32 Any 32-bit executable file described as “[PE_Win32]” by the Exedump program available on the Microsoft Platform SDK.

/ndf{1 index where{pop pop pop}{dup xcheck{bind}if def} ifelse}bind def

/ed{exch def}bind def

/SetPageOffset{neg wp$y add/dTop ed/dLeft ed}ndf

/SetPageSize {neg dTop add/dBot ed dLeft add/dRight ed}ndf

/DoCropMarks{gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft 76 sub dTop moveto 72 0 rlineto dLeft 76 sub dBot moveto 72 0 rlineto

 dRight 4 add dTop moveto 72 0 rlineto dRight 4 add dBot moveto 72 0 rlineto

 dLeft dTop 76 add moveto 0 -72 rlineto dRight dTop 76 add moveto 0 -72 rlineto

 dLeft dBot 4 sub moveto 0 -72 rlineto dRight dBot 4 sub moveto 0 -72 rlineto

 stroke grestore}ndf

/DoPageBox {gsave 0 setgray /dopaint true def 0.25 setlinewidth

 dLeft dTop moveto dRight dTop lineto dRight dBot lineto dLeft dBot lineto

 closepath stroke grestore}ndf

40.5 72 SetPageOffset

531 648 SetPageSize

DoCropMarks

DoPageBox"

Filename: NT5LOGO.DOC Project: Designed for Microsoft Windows
Template: Normal.dot Author: Microsoft Last Saved By: Mark Walter
Revision #: 11 Page: 1 of 1 Printed: 10/02/98 07:10 AM

0 setgray /dopaint true def 2 2 moveto

/str 30 string def /Times-Roman findfont 5 scalefont setfont

(Printed On:) show statusdict begin product show end

(Colorlayer:) show /colorlayer where {pop colorlayer str cvs show}{(?) show}ifelse

(Document Page:) show wp$fpage show"
!Unexpected End of Expression

