
A Jini-Based Publish and Subscribe Capability

Vaughn T. Combs and Dr. Mark Linderman

Air Force Research Laboratory
Information Directorate

Rome, New York

ABSTRACT

This paper describes a Publish and Subscribe capability developed under the Air Force Research Laboratory’s (AFRL)
Joint Battlespace Infosphere (JBI) project. The paper will give a brief description of the JBI and it’s core service
components of publish, subscribe and query. A detailed description of the Pub/Sub system design and implementation
will then be given describing how and where Java, Jini, and XML technologies were used to describe information
objects, match subscribers to appropriate dissemination nodes, and disseminate information objects to subscribing
clients. Finally we describe a number of applications that are currently using the Pub/Sub capability.

Keywords: Joint Battlespace Infosphere, JBI, Jini, XML, Publish and Subscribe

1. INTRODUCTION

The Joint Battlespace Infosphere1,2,3 (JBI) is an information management concept developed by the Air Force Scientific
Advisory Board to address information management challenges in a military environment. A JBI comprises many
diverse applications (called clients) and a set of core services that enable the dissemination, persistence and control of
information being shared among the applications. One of the key core services provided to disseminate information is
publish and subscribe (pub/sub). Pub/sub was chosen because it encourages very loose coupling between applications; it
is believed that traditional military systems are too tightly coupled leading to interoperability and extensibility
challenges.

However, it was thought that the traditional ‘channel-based’ pub/sub mechanisms did not provide enough fine-grain
control to ensure that subscribers receive only appropriate information. Indeed, while a hierarchical tree of channels is
useful to capture the essence of conceptual refinement, it is insufficient to deal with vast amounts of data – all of an
identical ‘type’ or channel. Previous to JMS4 1.0.2, the only solution was to create sub-channels to segregate
information, but it was thought that this was too static in nature. For example, partitioning channels by geographical
extent works if the regions of interest are static, but if the data represent the forward line of battle, this is constantly
shifting. The channel hierarchy cannot be redefined in real time.

To address this issue and to facilitate interoperability, it was decided that information would be structured, and that
subscribers would indicate their information needs with predicates over the structured information. However, not all
information is naturally structured or likely to be used in predicates (e.g. images), so it was decided that the information
would be a) typed, b) have a payload that may contain anything, and c) have structured metadata describing the payload.
These three elements combine to form the information object. All applications using the JBI to exchange information
must provide that information as typed information objects.

The pub/sub infrastructure is responsible for applying subscriber predicates to the metadata of published information
objects. If the metadata of an information object satisfies a predicate, the information object is forwarded to the
subscriber. This paper describes Jini-based mechanisms to broker publishers and subscribers efficiently and push
information objects from publishers to subscribers.

Efficient brokering is based upon publishers registering before starting to publish. During the registration process, the
publisher indicates its invariant metadata. Invariant metadata are elements of the information object metadata that will
be constant in all subsequently published information objects. This information permits an efficient first-level matching

of subscribers and publishers. Subsequent matching, while more sophisticated, incurs a runtime penalty for subscriber
predicate evaluation for each potentially matching subscriber each time an information object is published.

This implementation uses XML and XML Schema to represent metadata. Publishers provide invariant metadata as an
XML document at time of registration. The underlying core service uses the schema to identify the invariant portions of
the metadata to be used for registration with Jini’s broker (lookup service). In addition to brokering based on the
invariant aspects of the metadata, the current implementation allows for subscription using an arbitrary XPath or XQL
predicate. This capability enhances Jini’s equality based matching capabilities with support for inequality, AND, OR,
NOT, etc. In addition, when the published information object payload happens to be in XML format (not a requirement),
the pub/sub service permits arbitrary content-based filtering as part of the subscriber API. In addition to disseminating
published information objects directly into the address space of subscribing applications, the Pub/Sub system also allows
for indirect dissemination via email.

The Pub/Sub capability is currently being used by over 30 DoD contractors and is in active use for internal research and
development projects. Additionally, this implementation has been included as an adjunct capability in the Control of
Agent-Based Systems (CoABS) Grid.

1. Why Publish and Subscribe?

As mentioned above, the Air Force Scientific Advisory Board (SAB) chose a publish/subscribe mechanism to promote
interoperability and reduce cost. Why?

When assembling a coalition of allies, as is often the case today, commanders must rely on systems that have the
capability to characterize information completely enough so that the right information gets to the right coalition partners
at the right time. A publish and subscribe paradigm may be used to richly characterize information object using metadata
descriptions. Typically the producer of the information object creates a metadata descriptor associated with a distinct
information object instance and then publishes it with the object. The subscriber or consumer of the information submits
a subscription predicate defined over the metadata associated with information objects of that type. The underlying core
services may then use this information to broker for the delivery of information objects between the producers of the
information and the consumers of the information. Such a system allows for disparate military systems to share and
disseminate information with no consideration for individual system interfaces.

In addition, most military system architects are coming to the conclusion that building systems that are tightly tied to the
most recent substrate technologies makes these systems resistant to change. It is precisely this limitation that has led the
JBI group to work toward a set of Common Core Service APIs (these APIs are under development and not presented
here). The specification of the Common API is an ongoing DoD community processes which is making considerable
progress. This approach would allow developers to design and implement client applications that need not consider what
underlying substrate is being used for a particular JBI platform implementation. This notion alone is powerful in the
context of military system implementations. Legacy applications that are built on JBI publish, subscribe, and query
capabilities would no longer need to reinvest considerable resources to take advantage of the most recent shifts in
technology. JBI platform implementers would implement the client API using the new technologies and existing client
applications would run with, conceivably, no alteration.

2. The JBI Jini-Based Publish and Subscribe Core Services

The following sections give a brief description of how the JBI Jini-Based Publish and Subscribe core services work. This
implementation provides a very convenient set of API method signatures for use by JBI publishing and subscribing client
applications. While this implementation does not implement the aforementioned Common API, it does provide an API
for publication and subscription that hides all of the underlying Jini specifics from the client developer. The Common
API will be implemented on top of the current implementation as a set of veneer classes as the API becomes more
mature.

2.1. The Role of Metadata

In a JBI, all information objects are characterized via metadata. In this implementation we have chosen to describe the
metadata using XML5. Corresponding to each information object type is an XML Schema6 that describes the structure of
its metadata. The metadata is used by the underlying core services to match subscribers to information objects that are of
interest. Figure 1 shows a simple example of a metadata instance that describes a particular information object.

In the example the information object payload
happens to be intelligence imagery in the Kabul
area. The information object type name is
defined to be mil.af.rl.jbi.Intel_Imagery. For
each information object in the JBI there exists a
unique metadata schema that describes the
structure of the metadata for the type. The
schema is used by the developer of the
publishing application to generate valid
metadata describing the object being published.
The schema is similarly used by the subscribing
application developer to create a predicates over
the metadata that describe the subscriber’s
information requirements.

In our implementation we distinguish between
the invariant and variant aspects of metadata. In
the example above we may wish to consider the
attribute “RequiredMetadata” subelement to be
invariant. In other words, for this session, we
could reasonably expect that the type,
JBIIdentifier, publisher, keywords and language
would not change for each of the images
published. In contrast, we could consider all of
the “ImageDescriptor” information to be a
variant sub-element of the metadata. For
example, we would expect that, in general, the

location of the target depicted in the image published would change with each published image. While this would seem
to be an unnecessary distinction, we will describe how the identification of the invariant and variant portions of the
metadata may be used to increase the efficiency of the brokering mechanisms used in this implementation. Currently we
annotate subelements within the XML Schema with comments denoting whether a subelement is variant. In future
releases we will allow the user to specify this using XML attributes.

Work has begun to eliminate the additional specification of a subscription template regarding the invariant aspects of the
metadata. The schema would then also be used to parse the XPath predicate for equality based expressions. This
information would be used in the creation and population of the necessary underlying Entry objects.

2.2. What is Jini?

Jini7 is a freely available service oriented architecture that was originally designed as a distributed computing
environment to provide networked devices with a network level plug and play capability. The architecture specifies how
clients and services find each other within a “community”. The service implementers supply Jini and, in turn, clients
with a portable Java-based object (proxy) that can be used to allow the client to access and interact with the service.
While, in most cases, this proxy uses Java Remote Method Invocation (RMI), any network technology may be used (i.e.
CORBA, SOAP, etc.).

 When a service joins a network of Jini enabled services, it must advertise its capabilities by publishing the proxy
implementing the service’s exported API. The proxy is registered with Jini’s Lookup Service (LUS). A client

<?xml version="1.0" encoding="UTF-8"?>
<metadata xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="Intel_Imagery.xsd">
 <mil.af.rl.jbi.Intel_Imagery/>
 <RequiredMetadata>
 <Type>Imagery</Type>
 <JBIIdentifier>JBI000023</JBIIdentifier>
 <publisher>418th</publisher>
 <keywords>Intel</keywords>
 <language>EN</language>
 </RequiredMetadata>
 <ImageDescriptor>
 <ImageType>IR</ImageType>
 <Area>Kabul</Area>
 <LocationCoord>
 <lat>33.34</lat>
 <latord>N</latord>
 <long>69.98</long>
 <longord>E</longord>
 </LocationCoord>
 </ImageDescriptor>
</metadata>

Figure 1. Example of metadata for intelligence imagery.

application may then request the proxy for a specific service. A typical example may be to request the proxy for a
“Printer Service”. This would probably not be desirable, since you would receive the proxies for all printers that are
currently registered. You may, alternatively, wish to interact with a printer within the same building that is capable of
printing in color. Jini allows the service to further characterize itself using classes that describe its attribute value pairs.
The Jini LUS would then allow the client application to use the additional attributes to specify a limited filtering
capability. Currently the Jini LUS only allows for equality based matching with wildcarding. In our previous example
one could then easily request the proxies to all printer services that are capable of printing in color and/or all printer
services within a specific building or, if desired, all printer services. When the client application receives the service's
published proxy object, it will download any code it needs in order to interact with the service.

Jini supports a rather robust set of protocols to enable the spontaneous discovery of services as they enter (and leave) a
community. Should a client wish to use a specific service and it is not currently registered within the community, the
client may choose to be notified when one becomes available. Analogously, the client may also choose to be notified
when a service leaves the community. Additional Jini lookup services may be instantiated within the community to
support a collection of lookup services that are tied to specific groups or simply to provide for a certain level of fault
tolerance. In this case the clients and services within the community are notified of the new LUS and are afforded the
opportunity to register with it.

2.3. Brokering

One of the most essential capabilities within a publish/subscribe system is a well-designed brokering capability. The
fundamental responsibility of the broker is to the match information objects produced by a publisher with appropriate
subscribers. This section describes how the Jini-based Publish and Subscribe core services leverage the brokering
capability implemented within the Jini Lookup Service with XML based technologies to provide efficient matching and
information object dissemination services.

2.3.1. Using Jini Within the Publish and Subscribe Infrastructure

In a previous section, we touched briefly on Jini’s ability to characterize services based on attributes. Jini allows a
service to register a proxy with its LookUp Service (LUS). The proxy is ultimately used by remote clients to interact
with the service. In addition, the service may associate a number of classes that implement the Entry interface with the
proxy. These Entry class instances contain simple attribute/value pairs that are used by the LUS for the equality-based
matching capabilities described above. If a successful match occurs, the proxy is then handed off to the client and the
client may then interact directly with the service.

We use this capability to enable a first level of matching between published objects and subscribers. As mentioned
above, we distinguish between the invariant and variant aspects of metadata. The invariant metadata is used to specify
attribute value pairs that will be registered with the Jini LUS. Specifically, our implementation uses the schema for the
information object metadata and the metadata instance provided by the publishing application to auto-generate,
instantiate and populate the Entry classes that we use to register with the Jini LUS. The associated “proxy” that is
registered is actually an exported API that will be used by the JBI’s subscription side classes to register with appropriate
dissemination nodes (delegate model) or publishing applications (peer-to-peer model).

The subscribing application, using the JBI subscription API, may then register a subscription template and predicate. The
subscription template (an XML document) is used to specify the first level filtering that we would like to apply over the
invariant attributes. Again, unbeknownst to the subscribing application, we generate, instantiate, and populate all Entry
classes needed by the underlying Jini substrate and use the classes to register our “subscription template”. We will
discuss both the publish and subscribe side interactions in greater detail in a later section.

2.3.2. Using XML within Publish and Subscribe Infrastructure

Previously we have mentioned that this implementation treats variant and invariant metadata differently. Using our
previous example the publishing application first would register to publish providing an XML document that specifies

information object type and the invariant element values that are appropriate for the registered sequence of published
objects.

The information shown in Figure 2 would be
used to populate the generated Entry classes and
subsequently register with the Jini LUS. Upon
publication, a full complement of metadata
would be provided (both variant and invariant)
not unlike the example shown in section 2.1.
The subscribing client application may provide
two pieces of information. First, a subscription
template must be defined for the invariant
portions of the metadata (Figure 3). This
template is essentially an XML document that
describes the equality based matching with
wildcarding semantics that would be provided as
our first level match between candidate
publication and subscription.

Notice that, in this example, the subscriber has
decided that she is interested in all Imagery
published by the 418th that is annotated in
English. In other words, the client has wildcarded
the JBIIdentifier and keywords fields.

While this first level of matching is very
powerful it is inadequate given the matching
semantics that are necessary within a JBI (i.e.
inequality, AND, OR, NOT, etc.). To support
the appropriate level of matching the Pub/Sub
core services use XPath or XQL technologies to
do additional predicate testing in the
dissemination nodes and peer publishers (default
implementation uses XPath).

To recap, the first level match is made and, if

successful, a registration process occurs that allows the subscriber to register an optional XPath expression. The
expression will then be used as a predicate that will be applied to the metadata that is published with each of the
information objects of interest. An example of the instance metadata may be found in Figure 1. If the metadata describes
an object that the subscriber wants then it will be disseminated.

The following is a simple but very powerful XPath expression that is consistent with our example:

*[(/metadata/ImageDescriptor/LocationCoord/lat>33.2) and (/metadata/ImageDescriptor/LocationCoord/lat<35.0) and
(/metadata/ImageDescriptor/LocationCoord/latord='N') and (/metadata/ImageDescriptor/LocationCoord/long>65.7) and
(/metadata/ImageDescriptor/LocationCoord/long<70.0) and (/metadata/ImageDescriptor/LocationCoord/longord='E')]

The expression defines a rectangular region in and around Kabul, Afghanistan. If this predicate were specified as part of
the subscription then only the intelligence images that are of targets within the defined rectangular region would be
disseminated to the subscriber.

Additionally, the subscriber may optionally provide an XPath filter that would be applied to the payload of the published
information object. If the payload is in XML format (certainly not a requirement) the dissemination nodes will apply the

<?xml version="1.0" encoding="UTF-8"?>
<metadata xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="Intel_Imagery.xsd">
 <mil.af.rl.jbi.Intel_Imagery/>
 <RequiredMetadata>
 <Type>Imagery</Type>
 <JBIIdentifier>JBI000023</JBIIdentifier>
 <publisher>418th</publisher>
 <keywords>Intel</keywords>
 <language>EN</language>
 </RequiredMetadata>
</metadata>

Figure 2. Invariant metadata used to populate Entry classes.

<?xml version="1.0" encoding="UTF-8"?>
<metadata xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi:noNamespaceSchemaLocation="Intel_Imagery.xsd">
 <mil.af.rl.jbi.Intel_Imagery/>
 <RequiredMetadata>
 <Type>Imagery<Type>
 <JBIIdentifier/>
 <publisher>418th</publisher>
 <keywords/>
 <language>EN</language>
 </RequiredMetadata>
</metadata>

Figure 3. Subscription template for invariant metadata.

filter to the payload and disseminate only that part of the payload that is of interest. In contrast to our previous example
the payload depicted in Figure 4 contains a target list. Each target is characterized by a descriptor that is a sub-element
within the information object payload (XML in this case).

The subscriber may provide a content-based filter
to return only target descriptors that are in a
specific rectangular geographical region:

//descriptor[(((./position/lat>'33.2') and
(./position/lat<'35.0')) and (./position/ladir='N'))
and (((./position/long<'70.0') and
(./position/long>'67.8')) and (./position/lodir='E'))]

Again, the distinction between the XPath
predicate and the XPath filter is that the predicate
is only applied to the metadata characterizing the
published information object. The filter is applied
to the payload (if in XML format) to determine
what portions of the payload should be
disseminated to the subscriber.

2.4. Interactions Within the Pub/Sub
System

This section describes, in greater detail, the interactions that take place within the JBI Jini-Based Publish and
Subscription Services.

Our implementation supports both peer-to-peer and delegate implementations. These implementations may co-exist with
one another. The client applications interact with the system via three adapter classes. The subscribing application uses a
Subscriber Adapter (SA) while a publishing application may use a Publisher Adapter (PA) for peer-to-peer publication or
a Publisher Adapter Light (PAL) class when using delegates for dissemination.

Using Figure 5 below, we will quickly walk through the publish and subscribe sequences. We will go into greater detail
later in this section. In steps 1 through 4 the publishing client registers it’s intention to publish with the JBI. It is at this
point that the client provides the XML Schema representing the structure of the metadata used to characterize the
information object type and an XML document specifying the invariant metadata element values as discussed in the last
section. In steps 5 through 8 the subscribing client registers it’s subscription with the JBI. In this case the subscription is
first matched to a candidate dissemination node using the XML document subscription template. The adapter then
registers with the appropriate dissemination node(s) optionally providing an additional predicate and/or filter that may be
applied to the published instance metadata and payload.

 The following discussions describe the use and, at a high level, the interactions specifically when a publishing
application uses a Publisher Adapter Delegate (PAD).

A PAD is a dissemination node that handles all publishing related processing on behalf of a publishing application.
Currently a PAD is characterized simply via two arbitrary strings that may be used by a publishing application to broker

<targets>
 <descriptor>
 <name>ALPHA50</name>
 <type>F15E</type>
 <position>
 <lat>35.217</lat>
 <ladir>N</ladir>
 <long>62.267</long>
 <lodir>E</lodir>
 </position>
 </descriptor>
 <descriptor>
 <name>BRAVO51</name>
 <type>A10A</type>
 <position>
 <lat>34.817</lat>
 <ladir>N</ladir>
 <long>67.817</long>
 <lodir>E</lodir>
 </position>
 </descriptor>
 …
</targets>

Figure 4. Example XML payload for a target list.

for a distinct delegate. Any number of delegates may be started within the environment and they may be characterized in
any way that is deemed appropriate.

Figure 5. Interactions within the JBI Jini-Based Publication and Subscription Services.

In (1) the publishing application uses the connectToDelegate method within the Publisher Adapter Light API to connect
to a distinct PAD. This method will return a unique identifier that may be used in subsequent PAL API calls to interact
with a distinct delegate. This technique is employed to support the use of multiple delegates within one publishing
application.

A great deal of care was taken in creation and management of leases between the PAL implementation classes and a
matched PAD. Since the PAD consumes resources on behalf of each of its matched publishers (maintaining publication
queues, dissemination threads, registrations with LUS, etc.) it was important to implement a lease between the PAL and
matched PAD. The lease times used are all configurable via user properties that may be specified at startup. Should a
publishing application lose contact with a PAD or die the PAD will clean up after the publisher in an appropriate
manner.

In (2) a proxy is returned that will be used by the implementing PAL classes for all interactions with the matched
delegate. The proxy itself is never used by the publishing application. Instead the adapter implementation classes use the
proxy to interact with the PAD on behalf of the client application. Moreover, the using application is never aware of the
fact that it is using Jini.

In (3) the user invokes the registerPublisher method within the PAL API to register a publishable object with the JBI
Pub/Sub. The client application provides the information object metadata’s XML Schema and the invariant information
object metadata attribute values in XML format. The information is then used by the underlying PAL implementation

PUB

PUB

PUB

Lookup Service

SUB

SUB

JiniJini

PA

PA = Publisher Adapter

SA

SA = Subscription AdapterPAD= Publisher Adapter Delegate

PAD

Reg.Publish

Subscribe

PAD
Sub Proxy

SA Proxy

PAD
Lookup

PAD
Pub Proxy

Registration

Object

(4)

(2)

(5)

(1)

(3) (6)

(7)

(8)

classes to generate the necessary Jini Entry classes. Subsequently, the classes are used for registration of the invariant
metadata attribute values with the Lookup Service. The instantiated Entry class instances are sent to the PAD as part of
the registration process. The registerPublisher method returns another UID that identifies this particular publishable
information object registration.

While the Entry class code generation software utilizes the XML Schema to define the structure of the classes, for the
most part, the code is class-based and hardcoded. In subsequent releases the code generation will be accomplished using
the XML Schema and an associated XSL stylesheet. This approach will allow us to flexibly change how the Entry class
code is generated from the XML Schema should the overall metadata structure evolve over time. Any overall changes in
metadata representation and structure could then be handled without having to alter the underlying implementation code.

In (4) the PAD registers the publishable object’s invariant metadata with the Jini LUS for brokering.

At this point the publishing application may use one of the publish method signatures supported by the PAL API to
publish information objects and associated metadata.

To recap, the publishing application uses variations of three very simple method signatures connectToDelegate,
registerPublisher, and publish.

In (5) we begin to look at a subscriber’s use of the Subscriber Adapter API. The subscribing application simply uses one
of the SA API registerSubscriber methods to register a subscription. The method allows for the specification of an XML
document that is the metadata template. The template is essentially used to specify the equality based matching criteria
over the invariant portions of the metadata. Entry classes that reflect this information are then created, instantiated,
populated and used to register this first level of matching criteria with the Jini LUS. It is at this point that the XPath
predicate may also be specified as an argument that will eventually be applied by the PAD over the metadata published
with a specific information object instance. In addition, it is at this point that a subscriber may specify a content-based
filter in XPath as one of the registerSubscriber arguments. The PAD will determine if the payload is well-formed XML
and, if it is, it will apply this XPath expression on behalf of the subscribing application and will only send the portions of
the payload that the application needs. The subscriber may also specify a notification listener that will be used by the
Subscription Adapter to notify the application of information object arrival and loss. Finally, we allow the subscriber to
specify both direct and indirect dissemination mechanisms. Specifically, the subscriber may choose to have the
information object delivered directly into the application’s address space (SA individual subscription queues) or he may
choose to have the object delivered to a number of email recipients. The registerSubscriber method returns a unique
identifier that identifies a specific subscription and is used in all subsequent SA API calls. This allows the subscribing
application to register multiple subscriptions using the same Subscription Adapter (in fact only one SA is allowed in a
single address space).

The next two interactions are never seen by the subscribing application. In (6) the Subscriber Adapter receives a proxy to
an appropriate PAD where the match has been made using equality based matching over the invariant portions of the
information object metadata. In (7) the SA uses the PAD proxy to register the additional subscription information such as
the XPath metadata predicate, XPath content-based filter, indirect email addresses, the subscription UID, and, most
importantly, a proxy that the PAD may use to contact the Subscriber Adapter. The registered proxy is mostly used to
push published objects into the address space of the subscribing application and to determine the health and status of the
subscribing application.

We have mentioned earlier that the current implementation also supports a peer-to-peer implementation using the
Publisher Adapter classes. The interactions in this case are essentially identical to the delegate discussion with the
exception that we do not connectToDelegate and, when matched via the invariant portions of the information object
metadata, the Subscriber Adapter is given a proxy to the Publisher Adapter that is running in the address space of the
appropriate publishing application. The PA then handles all of the processing that we discussed earlier regarding PADs
(i.e. publication queues, management of dissemination threads, metadata predicate processing, content-based filtering,
email dissemination, etc.).

3. Application Areas

In this section we will provide a brief description of some of the applications that are currently using this implementation
of Pub/Sub.

3.1 Airborne Experiment

The airborne experiment is a joint project involving the Air Force Research Laboratory (AFRL) Information
Directorate’s Intelligent Adaptive Communications Controller (IACC) and Joint Battlespace Infosphere (JBI) teams.

The IACC project is focused on the requirements of Air Mobility Command (AMC) for global in-transit visibility and
seamless, multi-media command and control. IACC provides dynamic network connectivity over multiple resources
without control from a user. The in-house IACC team has provided information connectivity to airlifters and other
remote/deployed users, by intelligently integrating and managing available communications resources. These resources
include military communications such as HF and UHF Satcom, as well as commercial resources such as Global Air
Traffic Management (GATM) network, Inmarsat and Iridium. Through integration existing communications media, the
system provides for cost effective (no aircraft mods) information capability to deployed and in-transit assets. The IACC
system integrates current, stove-piped communications systems to establish a secure, assured, real-time information and
communications infrastructure.

The airborne experiment was developed to determine how the JBI Jini-Based Publication and Subscription Services
would perform over extremely disadvantaged communications links. The IACC team maintains a testbed capability that
allows for experimental transmission and characterization of traffic over IACC tactical links (i.e. UHF LOS, HF, and
UHF Satcom). During the first phase of the experiment the team instantiated an “airborne” client that used a metadata
template to subscribe to an Air Tasking Order (ATO). An ATO can be rather large so, in order to decrease bandwidth
utilization, a content-based filter (XPath expression) was provided at the time of subscription. The filter was applied by
the dissemination node so that only mission information that pertained to the airborne node would be disseminated to the
subscriber. Since the dissemination node (PAD) was ground based this significantly decreased the bandwidth utilized.
During the first phase of the experiment the aggregate bandwidth ranged from 7200 to approximately 23000 bps. The
first phase of the experiment proved that the Pub/Sub performed reasonably well over a disadvantaged communications
substrate. In the future the team will explore how the Pub/Sub behaves while subjected to various communications
degradations and failures. In addition, a study will be made of the control message exchanges spawned by the Pub/Sub
infrastructure to determine whether optimizations may be made.

3.2 JView

JView8 is a multi-purpose, runtime re-configurable, operator customizable, platform-independent, object-oriented,
visualizer. JView has been developed by an in-house research team within the Air Force Research Lab’s Information
Directorate. Currently the JBI and JView team are using the JBI Pub/Sub to publish simulated UAV telemetry and
imagery. JView then subscribes for specific published UAV information and provides the information in both two and
three-dimensional renderings within in an operationally meaningful context. In the next year the JBI and JView team
will continue to explore how JView may be used to more intuitively metaphor for the subscription of information object
data. To that end, JView components will be utilized to provide a means for defining and submitting subscriptions based
on type and spatial limitations reflected within information object metadata.

3.3 MCP

The Master Caution Panel (MCP) provides the Joint Forces Air Component Commander (JFACC) with a tailorable,
web-based application to manage the Air Operations Center (AOC) as a weapon system. The system is used to further
understand how critical command and control systems operate when systems degrade and fail. In addition MCP provides
a list of recommended courses of action to mitigate damage to the overall planning, assessment, and execution of the

expeditionary air campaign. In short, the MCP provides a commander with system-wide command and control resource
monitoring and centralized, standardized status reporting, automated assessment of mission impact, and intuitive web-
based presentation of information that is individually tailorable.

The JBI Pub/Sub is used to instrument “Other Weapons Systems” than Command and Control, such as Unmanned Ariel
Vehicles (UAVs) and telephone switches. In the UAV integration experiment JBI pub/sub has been integrated into the
MCP Monitoring architecture to support instrumentation of a RC trainer aircraft simulating a Micro UAV. This Micro
UAV transmits telemetry from an onboard GPS and Streaming video from an onboard camera to a ground station
receiver. The receiver application samples the stream, bundles telemetry data and imagery into a serialized information
object. The JBI Pub/Sub is then used to characterize and publish the information object. The MCP monitor utilizes the
JBI SubAdapter API to subscribe for the published UAV information objects. MCP then performs an evaluation of the
received information in order to provide a user defined representation of the status of the weapons system (in this case
the Micro UAV). The status information is then made available as multiple visualizations which are ultimately used by
operations staff who use the information to accomplish their mission within an AOC. In addition to this instrumentation
the JBI Pub/Sub is being used to correlate the telemetry/imagery objects with targeting information contained in the Air
Operations Data Base (AODB). This information forms a Battle Damage Assessment (BDA) object, which is then
published in conjunction with the UAV instrumentation. This capability will give the warfighter access to real-time
BDA information utilizing a low cost, state-of-the-art, solution.
3.4 COABS Grid Integration

The Control of Agent-Based Systems9 (CoABS) is a project that is funded by the Defense Advanced Research Projects
Agency (DARPA) to develop and demonstrate techniques to safely control, coordinate and manage large systems of
autonomous software agents. In general, the program has invested considerable resources in investigating the use of
agent technology to improve military command, control, communication, and intelligence gathering.

The CoABS grid middleware is a service centric implementation that is built upon Jini. It was discovered that a Pub/Sub
capability for the dissemination of information would be of great benefit to grid agent developers. Since this capability
did not currently exist in the grid and a viable prototype was available in the JBI implementation, it was decided to
integrate this capability within the grid. Currently the grid contains a full implementation of version 1.1.8 of the JBI Jini-
Based Pub/Sub and is actively being used by a number of grid researchers.

3.5 Joint Experimentation

This publish/subscribe implementation is currently being used to disseminate information from several real and many
simulated sensors. These sensors will stress the throughput of the pub/sub infrastructure both from a networking and an
XML processing perspective. Simple fusion engines will subscribe to the published sensor ‘reports’ to construct fused
(or correlated) outputs. Sensors that respond to tasking will also provide Jini services for this purpose.

4. Future Work

Work has begun to eliminate the additional specification of a subscription template regarding the invariant aspects of the
metadata. Ultimately, whether or not a sub-element of the metadata is invariant will be reflected in the metadata schema
as an element attribute. This information will be used to allow for the specification of the XPath predicate as the
complete subscription. The schema will then be used to parse the predicate for equality based expressions. In addition,
work has already started to implement an early version of the Common API on top of the Jini-Based Pub/Sub. This work
have already added to enhancements in performance and function within the current underlying implementation.

ACKNOWLEDGMENTS

The authors would like to thank the entire AFRL JBI team. Without the entire team’s diligence, continual support and
encouragement this work would not have been possible.

REFERENCES

1. USAF Scientific Advisory Board, “Information Management to Support the Warrior”, SAB-TR-98-02,
http://www.rl.af.mil/programs/jbi/documents/IMReport.pdf, 1998.

2. USAF Scientific Advisory Board, “Technology Options to Leverage Aerospace Power in Operations Other Than
Conventional War”, SAB-TR-99-01, http://www.rl.af.mil/programs/jbi/documents/TLAP_Final_Volume_1.pdf,
2000.

3. USAF Scientific Advisory Board, “Building the Joint Battlespace Infoshere Volume 1: Summary” SAB-TR-99-
02, http://www.rl.af.mil/programs/jbi/documents/JBIVolume1.pdf, 1999.

4. Java Message Service Documentation, “Java Message Service Specification Version 1.0.2b”,
http://java.sun.com/products/jms/docs.html, 2001.

5. World Wide Web Consortium, “Extensible Markup Language (XML) 1.0 (Second Edition)”,
http://www.w3.org/TR/2000/REC-xml-20001006 , 2000.

6. World Wide Web Consortium, “XML Schema Part 0: Primer”, http://www.w3.org/TR/2001/REC-xmlschema-0-
20010502, 2001.

7. Sun Microsystems Inc., “Jini Architecture Specification”, http://wwws.sun.com/software/jini/specs/jini1_2.pdf,
2001.

8. J. A. Moore, C. Salisbury, “Reconfigurable Simulation Visualizer”, Proc. SPIE 4026, pp. 50-54, 2000.
9. Kahn, Martha and Della Torre Ciclese, Cindy. “The CoABS Grid.” In Goddard/JPL Workshop on Radical Agent

Concepts (WRAC), 2001.

